Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kolonaukowe-rai/kurs-machine-learning
A repository with materials for Machine Learning Course
https://github.com/kolonaukowe-rai/kurs-machine-learning
classification course gradient-boosting learning machine-learning obsidian politechnikapoznanska project python3 regression scientific-club website
Last synced: 28 days ago
JSON representation
A repository with materials for Machine Learning Course
- Host: GitHub
- URL: https://github.com/kolonaukowe-rai/kurs-machine-learning
- Owner: KoloNaukowe-RAI
- Created: 2024-07-30T21:06:50.000Z (6 months ago)
- Default Branch: main
- Last Pushed: 2024-12-19T20:30:24.000Z (about 1 month ago)
- Last Synced: 2024-12-19T21:28:59.482Z (about 1 month ago)
- Topics: classification, course, gradient-boosting, learning, machine-learning, obsidian, politechnikapoznanska, project, python3, regression, scientific-club, website
- Language: Jupyter Notebook
- Homepage: https://kolonaukowe-rai.github.io/Kurs-Machine-Learning/
- Size: 18.2 MB
- Stars: 3
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Kurs-Machine-Learning
Link do strony internetowej: https://kolonaukowe-rai.github.io/Kurs-Machine-Learning/
# Autorzy:
- [@dariak153](https://github.com/dariak153)
- [@mmcza](https://github.com/mmcza)# Zbiory danych
Umieszczone w zakładce [dane](https://github.com/KoloNaukowe-RAI/Kurs-Machine-Learning/tree/main/Tasks/dane) pliki pochodzą z (datasets in the [dane](https://github.com/KoloNaukowe-RAI/Kurs-Machine-Learning/tree/main/Tasks/dane) directory come from):
- Student_Performance.csv - https://www.kaggle.com/datasets/nikhil7280/student-performance-multiple-linear-regression/data,
- healthcare-dataset-stroke-data.csv - https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset,
- f1_race_results.csv - zebrane przy pomocy api Ergast oraz dodatkowo przetworzone w celu inżynierii cech (gathered with Ergast's api, and additionally processed for feature engineering),
- top10K-TMDB-movies.csv - https://www.kaggle.com/datasets/ahsanaseer/top-rated-tmdb-movies-10k.