Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kolosovpetro/onthebinomialtheoremanddiscreteconvolution
On the link between binomial theorem and discrete convolution
https://github.com/kolosovpetro/onthebinomialtheoremanddiscreteconvolution
binomial-theorem math mathematics open-research open-science polynomials research research-project
Last synced: 26 days ago
JSON representation
On the link between binomial theorem and discrete convolution
- Host: GitHub
- URL: https://github.com/kolosovpetro/onthebinomialtheoremanddiscreteconvolution
- Owner: kolosovpetro
- License: mit
- Created: 2022-01-20T10:04:52.000Z (about 3 years ago)
- Default Branch: master
- Last Pushed: 2024-09-25T12:25:18.000Z (5 months ago)
- Last Synced: 2024-11-15T17:44:33.738Z (3 months ago)
- Topics: binomial-theorem, math, mathematics, open-research, open-science, polynomials, research, research-project
- Language: TeX
- Homepage: https://kolosovpetro.github.io/pdf/OnTheBinomialTheoremAndDiscreteConvolution.pdf
- Size: 4.98 MB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
README
# On the link between binomial theorem and discrete convolution
Let $\mathbf{P}^{m}_{b}(x)$ be a $2m+1$-degree polynomial in $x$ and $b \in \mathbb{R}$,
$$
\mathbf{P}^{m}_{b}(x) = \sum_{k=0}^{b-1} \sum_{r=0}^{m} \mathbf{A}_{m,r} k^r (x-k)^r
$$
where $\mathbf{A}_{m,r}$ are real coefficients.
In this manuscript, we introduce the polynomial $\mathbf{P}^{m}_{b}(x)$ and study its properties,
establishing a polynomial identity for odd-powers in terms of this polynomial.
Based on mentioned polynomial identity for odd-powers,
we explore the connection between the Binomial theorem and discrete convolution of odd-powers,
further extending this relation to the multinomial case.
All findings are verified using Mathematica programs.## Build and run in Intellij IDEA
- Install `MikTeX`: https://miktex.org/download
- Update `MikTeX`
- Install `SumatraPDF` viewer: https://www.sumatrapdfreader.org/download-free-pdf-viewer
- Path to SumatraPDF: `C:\Program Files\SumatraPDF`
- Install `Intellij IDEA Ultimate`: https://www.jetbrains.com/idea/download/#section=windows
- Activate `Intellij IDEA Ultimate`
- Install `TeXiFy IDEA` plugin: https://plugins.jetbrains.com/plugin/9473-texify-idea
- Clone this repository locally: `https://github.com/kolosovpetro/github-latex-template.git`
- Open `github-latex-template` folder in `Intellij IDEA Ultimate` and configure as follows
- LaTeX Configuration
![LaTeX Configuration](./img/latex_configuration.PNG "LaTeX Configuration")
- BibTeX Configuration
![BibTeX Configuration](./img/bibtex_configuration.PNG "BibTeX Configuration")
- Configure Inverse Search in `Intellij IDEA` for SumatraPDF: `Tools -> LaTeX -> Configure Inverse Search`
- Compile document using `Shift + F10`