Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/koushiknavuluri/stable-diffusion-xl-api

Reverse engineered API of Stable Diffusion XL 1.0 ( Midjourney Alternative ), A text-to-image generative AI model that creates beautiful 1024x1024 images.
https://github.com/koushiknavuluri/stable-diffusion-xl-api

api midjourney ml python replicate sdxl stable-diffusion-xl text-to-image

Last synced: about 2 months ago
JSON representation

Reverse engineered API of Stable Diffusion XL 1.0 ( Midjourney Alternative ), A text-to-image generative AI model that creates beautiful 1024x1024 images.

Awesome Lists containing this project

README

        

# Stable Diffusion XL ( API )

Reverse engineered API of Stable Diffusion XL 1.0 ( Midjourney Alternative ) via https://replicate.com/ , A text-to-image generative AI model that creates beautiful 1024x1024 images.

# Table of Contents

- [Stable Diffusion XL ( API )](#stable-diffusion-xl---api--)
* [Prerequisites](#prerequisites)
* [Installation](#installation)
* [Usage](#usage)
* [Send Prompt to generate image](#send-prompt-to-generate-image)
+ [Output](#output)
* [Example Images Generated](#example-images-generated)
* [Advanced Generation using parameters](#advanced-generation-using-parameters)
+ [List of parameters](#list-of-parameters)
* [CLI Version](#cli-version)
* [Disclaimer](#disclaimer)
* [License](#license)

## Prerequisites

To use this API, you need to have the following:

Python installed on your system
requests library installed
```bash
pip install requests

```

## Installation

To use the Claude AI Unofficial API, you can either clone the GitHub repository or directly download the Python file.

Terminal :

pip install sdxl

or

Clone the repository:

git clone https://github.com/KoushikNavuluri/stable-diffusion-xl-api.git

## Usage
Import the claude_api module in your Python script:

from sdxl import ImageGenerator

* Next, you need to create an instance of the ImageGenerator class:

```bash
client = ImageGenerator()
```
## Send Prompt to generate image
```bash
images = client.gen_image(
"Vibrant, Headshot of a serene, meditating individual surrounded by soft, ambient lighting.")
print(images)
```

### Output

## Example Images Generated

## Advanced Generation using parameters

```bash
#Parameters set to their default values
images = client.gen_image(prompt=
"Vibrant, Headshot of a serene, meditating individual surrounded by soft, ambient lighting.",count=1, width=1024, height=1024, refine="expert_ensemble_refiner", scheduler="DDIM", guidance_scale=7.5, high_noise_frac=0.8, prompt_strength=0.8, num_inference_steps=50)
print(images)
```
### List of parameters

* prompt = Input text prompt
* width = Width of output image(max:1024)
* height = height of output image(max:1024)
* count = Number of images to output. (minimum: 1; maximum: 4)
* refine = Which refine style to use ( no_refiner or expert_ensemble_refiner or base_image_refiner )
* scheduler = scheduler (valid_schedulers = ["DDIM" or "DPMSolverMultistep" or "HeunDiscrete" or "KarrasDPM" or "K_EULER_ANCESTRAL" or "K_EULER" or "PNDM"])
* guidance_scale = Scale for classifier-free guidance (minimum: 1; maximum: 50)
* prompt_strength = Prompt strength in image (maximum: 1)
* num_inference_steps = Number of denoising steps (minimum: 1; maximum: 500)
* high_noise_frac = for expert_ensemble_refiner, the fraction of noise to use (maximum: 1)

## CLI Version

For cli version you can check example folder in this repository (filename:cli.py)

> How to:

```bash
python main.py "beautiful landscape with two kittens,realistic,4k" --count 1 --width 1024 --height 1024 --refine expert_ensemble_refiner --scheduler DDIM --guidance_scale 7.5 --high_noise_frac 0.6 --prompt_strength 0.9 --num_inference_steps 40

```

## Disclaimer

This project provides an unofficial API for Replicate's Stable Diffusion XL and is not affiliated with or endorsed by Replicate or Stable Diffusion. Use it at your own risk.

## License
This project is licensed under the [MIT](https://choosealicense.com/licenses/mit/) License - see the LICENSE file for details.