An open API service indexing awesome lists of open source software.

https://github.com/kpj/rwrap

Seamlessly integrate R packages into Python.
https://github.com/kpj/rwrap

Last synced: 25 days ago
JSON representation

Seamlessly integrate R packages into Python.

Awesome Lists containing this project

README

        

# rwrap

[![PyPI](https://img.shields.io/pypi/v/rwrap.svg?style=flat)](https://pypi.python.org/pypi/rwrap)
[![Tests](https://github.com/kpj/rwrap/actions/workflows/main.yml/badge.svg)](https://github.com/kpj/rwrap/actions/workflows/main.yml)

A thin wrapper around [rpy2](https://rpy2.github.io/doc/latest/html/index.html) with strong opinions on how data types should be converted. This enables easy usage of R packages from Python with no boilerplate code.

> Warning: still work-in-progress, issues and PRs welcome

## Installation

```bash
pip install rwrap
```

## Usage

### Genomic Annotations

Accessing Bioconductor's [biomaRt](https://bioconductor.org/packages/release/bioc/html/biomaRt.html) package can be as simple as follows:
```python
from rwrap import biomaRt

biomaRt
##

snp_list = ["rs7329174", "rs4948523", "rs479445"]
ensembl = biomaRt.useMart("ENSEMBL_MART_SNP", dataset="hsapiens_snp")

df = biomaRt.getBM(
attributes=["refsnp_id", "chr_name", "chrom_start", "consequence_type_tv"],
filters="snp_filter", values=snp_list, mart=ensembl
)

print(df) # pandas.DataFrame
## refsnp_id chr_name chrom_start consequence_type_tv
## 1 rs479445 1 60875960 intron_variant
## 2 rs479445 1 60875960 NMD_transcript_variant
## 3 rs4948523 10 58579338 intron_variant
## 4 rs7329174 13 40983974 intron_variant
```

### Differential Gene Expression analysis workflow

Differentially expressed genes between conditions can be determined using [DESeq2](https://bioconductor.org/packages/release/bioc/html/DESeq2.html) and annotated with [biomaRt](https://bioconductor.org/packages/release/bioc/html/biomaRt.html):

```python
import pandas as pd
from rwrap import DESeq2, biomaRt, base, stats

DESeq2
##
biomaRt
##

# retrieve count data (https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP009615)
df_counts = pd.read_csv(
"http://duffel.rail.bio/recount/v2/SRP009615/counts_gene.tsv.gz", sep="\t"
).set_index("gene_id")
df_design = pd.DataFrame(
{"condition": ["1", "2", "1", "2", "3", "4", "3", "4", "5", "6", "5", "6"]},
index=df_counts.columns
)

# run differential gene expression analysis
dds = DESeq2.DESeqDataSetFromMatrix(
countData=df_counts, colData=df_design, design=stats.as_formula("~ condition")
)
dds = DESeq2.DESeq(dds)

res = DESeq2.results(dds, contrast=("condition", "1", "2"))
df_res = base.as_data_frame(res)

# annotate result
ensembl = biomaRt.useEnsembl(biomart="genes", dataset="hsapiens_gene_ensembl")
df_anno = biomaRt.getBM(
attributes=["ensembl_gene_id_version", "gene_biotype"],
filters="ensembl_gene_id_version",
values=df_res.index,
mart=ensembl,
).set_index("ensembl_gene_id_version")

df_res = df_res.merge(df_anno, left_index=True, right_index=True).sort_values("padj")
print(df_res.head()) # pd.DataFrame
## baseMean log2FoldChange lfcSE stat pvalue padj gene_biotype
## ENSG00000222806.1 158.010377 22.137400 2.745822 8.062214 7.492501e-16 2.853744e-11 rRNA_pseudogene
## ENSG00000255099.1 65.879611 21.835651 2.915452 7.489627 6.906949e-14 1.315359e-09 processed_pseudogene
## ENSG00000261065.1 92.351998 22.273400 3.144991 7.082182 1.419019e-12 1.351190e-08 lncRNA
## ENSG00000249923.1 154.037908 18.364027 2.636083 6.966407 3.251381e-12 2.476772e-08 lncRNA
## ENSG00000267658.1 64.371181 -19.545702 3.041247 -6.426871 1.302573e-10 8.268736e-07 lncRNA
```

### Geneset Enrichment Analysis

Geneset enrichment analyses can be conducted using [clusterProfiler](https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html):

```python
from rwrap import clusterProfiler, base

clusterProfiler
##

genelist = [8318, 991, 9133, 890, 983, 4085, 7272, 1111, 891, 4174, 9232]

res = clusterProfiler.enrichKEGG(gene=genelist, organism="hsa", pvalueCutoff=0.05)
df = base.as_data_frame(res)

print(df.head()) # pd.DataFrame
## ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
## hsa04110 hsa04110 Cell cycle 11/11 126/8115 8.124144e-21 1.462346e-19 6.841384e-20 8318/991/9133/890/983/4085/7272/1111/891/4174/... 11
## hsa04114 hsa04114 Oocyte meiosis 6/11 131/8115 6.823856e-09 6.141470e-08 2.873202e-08 991/9133/983/4085/891/9232 6
## hsa04914 hsa04914 Progesterone-mediated oocyte maturation 5/11 102/8115 1.237164e-07 7.266746e-07 3.399647e-07 9133/890/983/4085/891 5
## hsa05166 hsa05166 Human T-cell leukemia virus 1 infection 6/11 222/8115 1.614832e-07 7.266746e-07 3.399647e-07 991/9133/890/4085/1111/9232 6
## hsa04218 hsa04218 Cellular senescence 5/11 156/8115 1.036418e-06 3.731103e-06 1.745545e-06 9133/890/983/1111/891 5
```

### More examples

Check the `tests/scripts` directory for more examples showing how to rewrite R scripts in Python.

## Tests

A comprehensive test suite aims at providing stability and avoiding regressions.
The examples in `tests/` are validated using `pytest`.

Run tests as follows:

```bash
$ pytest tests/
```