Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/kprokofi/simplemaskrcnn

Simple MaskRCNN Instance Segmentation pipeline with training support on XPU (using Intel Extension For Pytorch), GPU and CPU
https://github.com/kprokofi/simplemaskrcnn

Last synced: 17 days ago
JSON representation

Simple MaskRCNN Instance Segmentation pipeline with training support on XPU (using Intel Extension For Pytorch), GPU and CPU

Awesome Lists containing this project

README

        

# SimpleMaskRCNN
Simple MaskRCNN Instance Segmentation pipeline with training support on XPU (using Intel Extension For Pytorch), GPU and CPU

# Installation

1. Install torch either for cuda or for XPU (IPEX)

``
pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu118
``

2. Install requirements

`` pip install -r requirements.txt ``

# Dataset format

[Datumaro COCO format](https://openvinotoolkit.github.io/datumaro/latest/docs/data-formats/formats/coco.html)

# How to run

```
usage: train.py [-h] [--epochs EPOCHS] --data-root DATA_ROOT [--device DEVICE] [--print-freq PRINT_FREQ] [--image-size IMAGE_SIZE [IMAGE_SIZE ...]] [--batch-size BATCH_SIZE] [--num-workers NUM_WORKERS] [--lr LR] [--wd WD] [--step-lr STEP_LR] [--warmup WARMUP]

options:
-h, --help show this help message and exit
--epochs EPOCHS number of total epochs to run
--data-root DATA_ROOT
path to dataset
--device DEVICE device to use for training
--print-freq PRINT_FREQ
print frequency
--image-size IMAGE_SIZE [IMAGE_SIZE ...]
input image size
--batch-size BATCH_SIZE
batch size
--num-workers NUM_WORKERS
number of workers
--lr LR learning rate
--wd WD weight decay
--step-lr STEP_LR step learning rate. If -1 passed the step lr will be difined automatically as the 0.7 of the epochs. if passed 0 no step lr will be used
--warmup WARMUP use warmup learning rate scheduler
```