Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kprokofi/simplemaskrcnn
Simple MaskRCNN Instance Segmentation pipeline with training support on XPU (using Intel Extension For Pytorch), GPU and CPU
https://github.com/kprokofi/simplemaskrcnn
Last synced: 17 days ago
JSON representation
Simple MaskRCNN Instance Segmentation pipeline with training support on XPU (using Intel Extension For Pytorch), GPU and CPU
- Host: GitHub
- URL: https://github.com/kprokofi/simplemaskrcnn
- Owner: kprokofi
- License: apache-2.0
- Created: 2024-02-22T12:42:46.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2024-04-08T15:42:30.000Z (9 months ago)
- Last Synced: 2024-04-08T19:08:06.520Z (9 months ago)
- Language: Python
- Size: 33.2 KB
- Stars: 0
- Watchers: 3
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# SimpleMaskRCNN
Simple MaskRCNN Instance Segmentation pipeline with training support on XPU (using Intel Extension For Pytorch), GPU and CPU# Installation
1. Install torch either for cuda or for XPU (IPEX)
``
pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu118
``2. Install requirements
`` pip install -r requirements.txt ``
# Dataset format
[Datumaro COCO format](https://openvinotoolkit.github.io/datumaro/latest/docs/data-formats/formats/coco.html)
# How to run
```
usage: train.py [-h] [--epochs EPOCHS] --data-root DATA_ROOT [--device DEVICE] [--print-freq PRINT_FREQ] [--image-size IMAGE_SIZE [IMAGE_SIZE ...]] [--batch-size BATCH_SIZE] [--num-workers NUM_WORKERS] [--lr LR] [--wd WD] [--step-lr STEP_LR] [--warmup WARMUP]options:
-h, --help show this help message and exit
--epochs EPOCHS number of total epochs to run
--data-root DATA_ROOT
path to dataset
--device DEVICE device to use for training
--print-freq PRINT_FREQ
print frequency
--image-size IMAGE_SIZE [IMAGE_SIZE ...]
input image size
--batch-size BATCH_SIZE
batch size
--num-workers NUM_WORKERS
number of workers
--lr LR learning rate
--wd WD weight decay
--step-lr STEP_LR step learning rate. If -1 passed the step lr will be difined automatically as the 0.7 of the epochs. if passed 0 no step lr will be used
--warmup WARMUP use warmup learning rate scheduler
```