Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kr1shnasomani/covidxraynet
Detection of COVID-19 from chest X-ray images using various CNN models - ResNet50, VGG16 and Xception
https://github.com/kr1shnasomani/covidxraynet
computer-vision deep-learning keras matplotlib neural-network numpy opencv pandas scikit-learn tensorflow
Last synced: 3 days ago
JSON representation
Detection of COVID-19 from chest X-ray images using various CNN models - ResNet50, VGG16 and Xception
- Host: GitHub
- URL: https://github.com/kr1shnasomani/covidxraynet
- Owner: kr1shnasomani
- Created: 2024-12-02T16:36:45.000Z (3 months ago)
- Default Branch: main
- Last Pushed: 2025-01-25T18:36:04.000Z (21 days ago)
- Last Synced: 2025-02-12T19:08:33.551Z (3 days ago)
- Topics: computer-vision, deep-learning, keras, matplotlib, neural-network, numpy, opencv, pandas, scikit-learn, tensorflow
- Language: Jupyter Notebook
- Homepage:
- Size: 2.41 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
COVIDXRayNet
This project leverages CNN models (Xception, VGG16, ResNet50) to detect COVID-19 from chest X-ray images. It compares model performance based on accuracy, precision, recall, and F1-score, offering insights into the best architecture for reliable medical image classification.## Accuracy & Loss Over Epochs:
| Model Name | Accuracy | Loss |
|------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Xception | ![image](https://github.com/user-attachments/assets/7dec0a90-01ef-4e9a-846d-b5988bab9dcf) | ![image](https://github.com/user-attachments/assets/43a15ff8-bc06-447a-9dd6-f3ed3d3b5c96) |
| ResNet50 | ![image](https://github.com/user-attachments/assets/3abdd91b-f597-487a-b93b-ac4cd2e4f4d3) | ![image](https://github.com/user-attachments/assets/5597a454-ca09-450d-840e-d2a9d3ea8e44) |
| VGG16 | ![image](https://github.com/user-attachments/assets/8088e746-a2f0-46bf-bc05-6770546e746f) | ![image](https://github.com/user-attachments/assets/d4079cd1-cb92-40f1-9e56-4a4a2e92cf8d) |## Confusion Matrix:
| Model Name | Plot |
|------------|-------------------------------------------------------------------------------------------|
| Xception | ![image](https://github.com/user-attachments/assets/15161ad2-409f-4343-8255-e5c0e55ce730) |
| ResNet50 | ![image](https://github.com/user-attachments/assets/1f6bd203-b734-4ef0-a0da-6bcd4bf66d3f) |
| VGG16 | ![image](https://github.com/user-attachments/assets/8935cfec-957b-4e86-a10d-8b76eb6eb026) |## Model Prediction:
| Model Name | COVID | non-COVID |
|------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Xception | ![image](https://github.com/user-attachments/assets/6c9f547c-19e4-43fb-b689-21462acd0296) | ![image](https://github.com/user-attachments/assets/49fdc908-ad2b-4292-9fdf-86b02d6e58c8) |
| ResNet50 | ![image](https://github.com/user-attachments/assets/e2ee79af-4b61-4bc6-b2d5-0e2f73ddfb3f) | ![image](https://github.com/user-attachments/assets/9be8d9b8-2bf0-4573-a88e-5b4d7b273c03) |
| VGG16 | ![image](https://github.com/user-attachments/assets/055eb479-2370-4873-b20c-3651b2fb69e9) | ![image](https://github.com/user-attachments/assets/935e999a-f937-46e9-b940-ee5358fc2692) |## Model Comparison:
| Model Name | Accuracy | Loss | Recall (COVID) | Recall (non-COVID) | Precision (COVID) | Precision (non-COVID) | F1-Score (COVID) | F1-Score (non-COVID) | Overall Accuracy | Model Size (MB) |
|------------|----------|------|----------------|--------------------|-------------------|-----------------------|------------------|----------------------|------------------|-----------------|
| Xception | 0.81 | 0.39 | 0.72 | 0.91 | 0.89 | 0.78 | 0.79 | 0.84 | 0.82 | 86.4 |
| ResNet50 | 0.84 | 0.41 | 0.82 | 0.87 | 0.86 | 0.84 | 0.84 | 0.85 | 0.85 | 214 |
| VGG16 | 0.81 | 0.39 | 0.97 | 0.96 | 0.96 | 0.97 | 0.96 | 0.96 | 0.96 | 204 |