Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/krdlab/lisys
LAPACK wrapper for C# + Matrix/Vector + Some well-known statistical techniques
https://github.com/krdlab/lisys
Last synced: 2 months ago
JSON representation
LAPACK wrapper for C# + Matrix/Vector + Some well-known statistical techniques
- Host: GitHub
- URL: https://github.com/krdlab/lisys
- Owner: krdlab
- License: mit
- Created: 2012-01-08T15:16:53.000Z (almost 13 years ago)
- Default Branch: master
- Last Pushed: 2013-04-01T12:23:26.000Z (almost 12 years ago)
- Last Synced: 2024-04-11T03:43:24.688Z (9 months ago)
- Language: C#
- Homepage:
- Size: 203 KB
- Stars: 5
- Watchers: 3
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Lisys (Japanese)
## What is it?
Lisys = LAPACK wrapper for C# + Matrix/Vector + Some well-known statistical techniques
## Features
* Vector, RowVector, ColumnVector
* Matrix
* Eigenvalues/vectors
* Singular Value Decomposition
* LU Decomposition
* Solver
* Linear Discriminant Analysis
* ...etc## Build & Run
1. LAPACK と Mingw の lib/dll を取得
次のサイトを参考に Windows 用の lib/dll をダウンロード
(Section: "Prebuilt dynamic libraries using Mingw")
2. "law" プロジェクトを以下のように設定
Section: "Prebuilt dynamic libraries using Mingw" の Instructions に従って設定する.
3. "law" -> "lisys" の順番でプロジェクトをビルド
4. 自身のプロジェクトにおける「参照の追加」で以下のファイルを設定
* `lisys.dll`
* `law.dll`一緒に `*.xml` がコピーされ,Visual Studio 上でパラメータヒントが出るようになります.
5. Windows のルールに従って LAPACK 関連の DLL を配置
* `liblapack.dll`
* `libblas.dll`
* `libgcc_s_dw2-1.dll`
* `libgfortran-3.dll`
* `libquadmath-0.dll`## Test
NUnit を利用しています.
1. NUnit をインストール
2. test プロジェクトをビルド
3. test/data フォルダを test/bin/Debug 以下にコピー
4. NUnit から test/bin/Debug/test.dll を実行## Sample
### sample 1
```csharp
const int C = 3;
var data = new Matrix[C];// input
for (int i = 0; i < C; ++i)
{
data[i] =
File.ReadAllLines(String.Format("data/iris/data_{0}.csv", i), Encoding.UTF8)
.Select(line =>
line.Split(',').Select(s => Double.Parse(s)).ToRow())
.ToMatrix();
}Lda result = Func.Lda(data);
// Coefficients of linear discriminants
var ldc1 = new ColumnVector(result.Eigenvectors[0]);
var ldc2 = new ColumnVector(result.Eigenvectors[1]);
var coef = new Matrix(ldc1, ldc2);for (int i = 0; i < C; ++i)
{
var m = data[i] * coef; // calculate scores// output
File.WriteAllText(String.Format("result_{0}.csv", i), Matrix.ToCsv(m), Encoding.UTF8);
}
```### sample 2
```csharp
var m = new Matrix(new[,] {
{86.0, 67.0},// ...
{96.0, 61.0} });
// correlation matrix
var cor1 = Func.Correlate(m, Func.Target.EachColumn);MatrixVisualizer.TestShowVisualizer(cor1); // test method of DebuggerVisualizer
// normalization -> correlation matrix
var n = new Matrix(m);
n.Columns.ForEach((ci, cv) => {
var avg = cv.Average;
var std = Math.Sqrt(cv.UnbiasedVariance);
cv.Apply((i, val) => (val - avg) / std);
});var cor2 = Matrix.T(n) * n / (n.RowSize - 1);
MatrixVisualizer.TestShowVisualizer(cor2);
```### other
その他細かな利用方法は `test` や `sample` プロジェクトを参照してください.
## License
MIT License
Copyright (C) 2007- KrdLab All Rights Reserved.
## TODO
* 64bit 対応