Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/krzjoa/kaggle-metrics

Metrics for Kaggle competitions 📏
https://github.com/krzjoa/kaggle-metrics

classification kaggle kaggle-competition metrics regression

Last synced: about 2 months ago
JSON representation

Metrics for Kaggle competitions 📏

Awesome Lists containing this project

README

        

# kaggle-metrics
![Python 3.7](https://img.shields.io/badge/python-3.7-blue.svg)
[![PyPI version](https://badge.fury.io/py/kaggle-metrics.svg)](https://badge.fury.io/py/kaggle-metrics )
[![Documentation Status](https://readthedocs.org/projects/kaggle-metrics/badge/?version=latest)](https://kaggle-metrics.readthedocs.io/en/latest/?badge=latest)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)

Metrics for Kaggle competitions.

## Installation
```bash
python3.7 -m pip install git+https://github.com/krzjoa/kaggle-metrics.git
```
or:

```bash
python3.7 -m pip install kaggle_metrics
```

## Usage
```python
from xgboost import XGBRegressor
import kaggle_metrics as km

X_train, y_train, X_test, y_test = get_data()

# Train
clf = XGBRegressor()
clf.fit(X_train, y_train)

# Get predictions
y_pred = clf.predict(X_test)

# Evaluate with kaggle-metrics
km.rmse(y_test, y_pred)

```