Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/krzjoa/m5
Data for M5 Walmart Kaggle Competition
https://github.com/krzjoa/m5
data-science kaggle-competition kaggle-dataset m5-competition m5-forecasting time-series-forecasting walmart walmart-sales-forecasting
Last synced: about 2 months ago
JSON representation
Data for M5 Walmart Kaggle Competition
- Host: GitHub
- URL: https://github.com/krzjoa/m5
- Owner: krzjoa
- License: other
- Created: 2022-08-31T19:15:39.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2022-09-07T20:54:59.000Z (over 2 years ago)
- Last Synced: 2024-09-23T01:18:55.603Z (3 months ago)
- Topics: data-science, kaggle-competition, kaggle-dataset, m5-competition, m5-forecasting, time-series-forecasting, walmart, walmart-sales-forecasting
- Language: R
- Homepage: https://krzjoa.github.io/m5
- Size: 37 MB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.Rmd
- License: LICENSE
Awesome Lists containing this project
README
---
output: github_document
---```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
warning = FALSE,
message = FALSE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```# m5
[![CRAN status](https://www.r-pkg.org/badges/version/m5)](https://CRAN.R-project.org/package=m5)
[![Buy hex
stciker](https://img.shields.io/badge/buy%20hex-m5-green?style=flat&logo=redbubble)](https://www.redbubble.com/i/sticker/m5-R-package-hex-by-krzjoa/122633859.EJUG5)
[![R-CMD-check](https://github.com/krzjoa/m5/workflows/check-standard/badge.svg)](https://github.com/krzjoa/m5/actions)> M5 Walmart Challenge Data
## Installation
You can install the development version of m5 from [GitHub](https://github.com/) with:
``` r
# install.packages("devtools")
devtools::install_github("krzjoa/m5")
```## Usage
```{r}
library(m5)
library(zeallot)
library(ggplot2)DIR <- 'data'
# Downloading the data
m5_download(DIR)# Loading the data
c(sales_train,
sales_test,
sell_prices,
calendar,
weights) %<-% m5_get_raw_evaluation(DIR)
# Preparing the data
m5_data <-
m5_prepare(sales_train, sales_test, calendar, sell_prices)# Demand classification
m5_demand <- m5_demand_type(m5_data)foods_1_demand <-
m5_demand[startsWith(as.character(m5_demand$item_id), "FOODS_1")]plot <-
ggplot(foods_1_demand) +
geom_point(aes(log(cv2), log(adi),
item_id = item_id, col = demand_type)) +
geom_hline(yintercept = log(1.32)) +
geom_vline(xintercept = log(0.49)) +
theme_minimal()plot
```