Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/krzjoa/m5

Data for M5 Walmart Kaggle Competition
https://github.com/krzjoa/m5

data-science kaggle-competition kaggle-dataset m5-competition m5-forecasting time-series-forecasting walmart walmart-sales-forecasting

Last synced: about 2 months ago
JSON representation

Data for M5 Walmart Kaggle Competition

Awesome Lists containing this project

README

        

---
output: github_document
---

```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
warning = FALSE,
message = FALSE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```

# m5

[![CRAN status](https://www.r-pkg.org/badges/version/m5)](https://CRAN.R-project.org/package=m5)
[![Buy hex
stciker](https://img.shields.io/badge/buy%20hex-m5-green?style=flat&logo=redbubble)](https://www.redbubble.com/i/sticker/m5-R-package-hex-by-krzjoa/122633859.EJUG5)
[![R-CMD-check](https://github.com/krzjoa/m5/workflows/check-standard/badge.svg)](https://github.com/krzjoa/m5/actions)

> M5 Walmart Challenge Data

## Installation

You can install the development version of m5 from [GitHub](https://github.com/) with:

``` r
# install.packages("devtools")
devtools::install_github("krzjoa/m5")
```

## Usage

```{r}
library(m5)
library(zeallot)
library(ggplot2)

DIR <- 'data'

# Downloading the data
m5_download(DIR)

# Loading the data
c(sales_train,
sales_test,
sell_prices,
calendar,
weights) %<-% m5_get_raw_evaluation(DIR)

# Preparing the data
m5_data <-
m5_prepare(sales_train, sales_test, calendar, sell_prices)

# Demand classification
m5_demand <- m5_demand_type(m5_data)

foods_1_demand <-
m5_demand[startsWith(as.character(m5_demand$item_id), "FOODS_1")]

plot <-
ggplot(foods_1_demand) +
geom_point(aes(log(cv2), log(adi),
item_id = item_id, col = demand_type)) +
geom_hline(yintercept = log(1.32)) +
geom_vline(xintercept = log(0.49)) +
theme_minimal()

plot
```