An open API service indexing awesome lists of open source software.

https://github.com/ksylvest/omniai

OmniAI standardizes the APIs for multiple AI providers like OpenAI's Chat GPT, Mistral's LeChat, Claude's Anthropic, Google's Gemini and DeepSeek's Chat..
https://github.com/ksylvest/omniai

anthropic chatgpt claude deepseek gemini google lechat mistral omniai openai ruby

Last synced: 19 days ago
JSON representation

OmniAI standardizes the APIs for multiple AI providers like OpenAI's Chat GPT, Mistral's LeChat, Claude's Anthropic, Google's Gemini and DeepSeek's Chat..

Awesome Lists containing this project

README

        

# OmniAI

[![LICENSE](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/ksylvest/omniai/blob/main/LICENSE)
[![RubyGems](https://img.shields.io/gem/v/omniai)](https://rubygems.org/gems/omniai)
[![GitHub](https://img.shields.io/badge/github-repo-blue.svg)](https://github.com/ksylvest/omniai)
[![Yard](https://img.shields.io/badge/docs-site-blue.svg)](https://omniai.ksylvest.com)
[![CircleCI](https://img.shields.io/circleci/build/github/ksylvest/omniai)](https://circleci.com/gh/ksylvest/omniai)

OmniAI provides a unified Ruby API for integrating with multiple AI providers, including Anthropic, DeepSeek, Google, Mistral, and OpenAI. It streamlines AI development by offering a consistent interface for features such as chat, text-to-speech, speech-to-text, and embeddings—ensuring seamless interoperability across platforms. Switching between providers is effortless, making any integration more flexible and reliable.

- [OmniAI::Anthropic](https://github.com/ksylvest/omniai-anthropic)
- [OmniAI::DeepSeek](https://github.com/ksylvest/omniai-deepseek)
- [OmniAI::Google](https://github.com/ksylvest/omniai-google)
- [OmniAI::Mistral](https://github.com/ksylvest/omniai-mistral)
- [OmniAI::OpenAI](https://github.com/ksylvest/omniai-openai)

## Examples

### Example #1: [Chat w/ Text](https://github.com/ksylvest/omniai/blob/main/examples/chat_with_text)

This example demonstrates using `OmniAI` with **Anthropic** to ask for a joke. The response is parsed and printed.

```ruby
require 'omniai/anthropic'

client = OmniAI::Anthropic::Client.new

puts client.chat("Tell me a joke").text
```

```
Why don't scientists trust atoms? Because they make up everything!
```

### Example #2: [Chat w/ Prompt](https://github.com/ksylvest/omniai/blob/main/examples/chat_with_prompt)

This example demonstrates using `OmniAI` with **Mistral** to ask for the fastest animal. It includes a system and user message in the prompt. The response is streamed in real time.

```ruby
require "omniai/mistral"

client = OmniAI::Mistral::Client.new

client.chat(stream: $stdout) do |prompt|
prompt.system "Respond in both English and French."
prompt.user "What is the fastest animal?"
end
```

```
**English**: The peregrine falcon is generally considered the fastest animal, reaching speeds of over 390 km/h.
**French**: Le faucon pèlerin est généralement considéré comme l'animal le plus rapide, atteignant des vitesses de plus de 390 km/h.
```

### Example #3: [Chat w/ Vision](https://github.com/ksylvest/omniai/blob/main/examples/chat_with_vision)

This example demonstrates using `OmniAI` with **OpenAI** to prompt a “biologist” for an analysis of photos, identifying the animals within each one. A system and user message are provided, and the response is streamed in real time.

```ruby
require "omniai/openai"

client = OmniAI::OpenAI::Client.new

CAT_URL = "https://images.unsplash.com/photo-1472491235688-bdc81a63246e?q=80&w=1024&h=1024&fit=crop&fm=jpg"
DOG_URL = "https://images.unsplash.com/photo-1517849845537-4d257902454a?q=80&w=1024&h=1024&fit=crop&fm=jpg"

client.chat(stream: $stdout) do |prompt|
prompt.system("You are a helpful biologist with expertise in animals who responds with the Latin names.")
prompt.user do |message|
message.text("What animals are in the attached photos?")
message.url(CAT_URL, "image/jpeg")
message.url(DOG_URL, "image/jpeg")
end
end
```

```
The first photo is of a cat, *Felis Catus*.
The second photo is of a dog, *Canis Familiaris*.
```

### Example #4: [Chat w/ Tools](https://github.com/ksylvest/omniai/blob/main/examples/chat_with_tools)

This example demonstrates using `OmniAI` with **Google** to ask for the weather. A tool “Weather” is provided. The tool accepts a location and unit (Celsius or Fahrenheit) then calculates the weather. The LLM makes multiple tool-call requests and is automatically provided with a tool-call response prior to streaming in real-time the result.

```ruby
require 'omniai/google'

client = OmniAI::Google::Client.new

class Weather < OmniAI::Tool
description "Lookup the weather for a location"

parameter :location, :string, description: "A location (e.g. 'Toronto, Canada')."
parameter :unit, :string, enum: %w[Celsius Fahrenheit], description: "The unit of measurement."
required %i[location]

# @param location [String] required
# @param unit [String] optional - "Celcius" or "Fahrenheit"
# @return [String]
def execute(location:, unit: "Celsius")
puts "[weather] location=#{location} unit=#{unit}"
"#{rand(20..50)}° #{unit} at #{location}"
end
end

client.chat(stream: $stdout, tools: [Weather.new]) do |prompt|
prompt.system "You are an expert in weather."
prompt.user 'What is the weather in "London" in Celsius and "Madrid" in Fahrenheit?'
end
```

```
[weather] location=London unit=Celsius
[weather] location=Madrid unit=Fahrenheit
```

```
The weather is 24° Celsius in London and 42° Fahrenheit in Madrid.
```

### Example #5: [Chat w/ CLI](https://github.com/ksylvest/omniai/blob/main/examples/chat_with_cli)

The `OmniAI` gem also ships with a CLI to simplify quick tests.

```bash
omniai chat "Who designed the Ruby programming language?"
```

```
The Ruby programming language was created by Yukihiro Matsumoto, often known as "Matz."
```

```bash
omniai chat --provider="google" --model="gemini-2.0-flash" "Who are you?"
```

```
I am a large language model, trained by Google.
```

### Example #6: [Text-to-Speech](https://github.com/ksylvest/omniai/blob/main/examples/text_to_speech)

This example demonstrates using `OmniAI` with **OpenAI** to convert text to speech and save it to a file.

```ruby
require 'omniai/openai'

client = OmniAI::OpenAI::Client.new

File.open(File.join(__dir__, 'audio.wav'), 'wb') do |file|
client.speak('Sally sells seashells by the seashore.', format: OmniAI::Speak::Format::WAV) do |chunk|
file << chunk
end
end
```

### Example #7: [Speech-to-Text](https://github.com/ksylvest/omniai/blob/main/examples/speech_to_text)

This example demonstrates using `OmniAI` with **OpenAI** to convert speech to text.

```ruby
require 'omniai/openai'

client = OmniAI::OpenAI::Client.new

File.open(File.join(__dir__, 'audio.wav'), 'rb') do |file|
transcription = client.transcribe(file)
puts(transcription.text)
end
```

### Example #8: [Embeddings](https://github.com/ksylvest/omniai/blob/main/examples/embeddings)

This example demonstrates using `OmniAI` with **Mistral** to generate embeddings for a dataset. It defines a set of entries (e.g. "George is a teacher." or "Ringo is a doctor.") and then compares the embeddings generated from a query (e.g. "What does George do?" or "Who is a doctor?") to rank the entries by relevance.

```ruby
require 'omniai/mistral'

CLIENT = OmniAI::Mistral::Client.new

Entry = Data.define(:text, :embedding) do
def initialize(text:)
super(text:, embedding: CLIENT.embed(text).embedding)
end
end

ENTRIES = [
Entry.new(text: 'John is a musician.'),
Entry.new(text: 'Paul is a plumber.'),
Entry.new(text: 'George is a teacher.'),
Entry.new(text: 'Ringo is a doctor.'),
].freeze

def search(query)
embedding = CLIENT.embed(query).embedding

results = ENTRIES.sort_by do |data|
Math.sqrt(data.embedding.zip(embedding).map { |a, b| (a - b)**2 }.reduce(:+))
end

puts "'#{query}': '#{results.first.text}'"
end

search('What does George do?')
search('Who is a doctor?')
search('Who do you call to fix a toilet?')
```

```
'What does George do?': 'George is a teacher.'
'Who is a doctor?': 'Ringo is a doctor.'
'Who do you call to fix a toilet?': 'Paul is a plumber.'
```

## Installation

The main `omniai` gem is installed with:

```sh
gem install omniai
```

Specific provider gems are installed with:

```sh
gem install omniai-anthropic
gem install omniai-deepseek
gem install omniai-mistral
gem install omniai-google
gem install omniai-openai
```

## Usage

OmniAI implements APIs for a number of popular clients by default. A client can be initialized using the specific gem (e.g. `omniai-openai` for `OmniAI::OpenAI`). Vendor specific docs can be found within each repo.

### Client

#### [OmniAI::Anthropic](https://github.com/ksylvest/omniai-anthropic)

```ruby
require 'omniai/anthropic'

client = OmniAI::Anthropic::Client.new
```

#### [OmniAI::DeepSeek](https://github.com/ksylvest/omniai-deepseek)

```ruby
require 'omniai/deepseek'

client = OmniAI::DeepSeek::Client.new
```

#### [OmniAI::Google](https://github.com/ksylvest/omniai-google)

```ruby
require 'omniai/google'

client = OmniAI::Google::Client.new
```

#### [OmniAI::Mistral](https://github.com/ksylvest/omniai-mistral)

```ruby
require 'omniai/mistral'

client = OmniAI::Mistral::Client.new
```

#### [OmniAI::OpenAI](https://github.com/ksylvest/omniai-openai)

```ruby
require 'omniai/openai'

client = OmniAI::OpenAI::Client.new
```

#### Usage with LocalAI

LocalAI support is offered through [OmniAI::OpenAI](https://github.com/ksylvest/omniai-openai):

[Usage with LocalAI](https://github.com/ksylvest/omniai-openai#usage-with-localai)

#### Usage with Ollama

Ollama support is offered through [OmniAI::OpenAI](https://github.com/ksylvest/omniai-openai):

[Usage with Ollama](https://github.com/ksylvest/omniai-openai#usage-with-ollama)

#### Logging

Logging the **request** / **response** is configurable by passing a logger into any client:

```ruby
require 'omniai/openai'
require 'logger'

logger = Logger.new(STDOUT)
client = OmniAI::OpenAI::Client.new(logger:)
```

```
[INFO]: POST https://...
[INFO]: 200 OK
...
```

#### Timeouts

Timeouts are configurable by passing a `timeout` an integer duration for the request / response of any APIs using:

```ruby
require 'omniai/openai'
require 'logger'

logger = Logger.new(STDOUT)
client = OmniAI::OpenAI::Client.new(timeout: 8) # i.e. 8 seconds
```

Timeouts are also configurable by passing a `timeout` hash with `timeout` / `read` / `write` / keys using:

```ruby
require 'omniai/openai'
require 'logger'

logger = Logger.new(STDOUT)
client = OmniAI::OpenAI::Client.new(timeout: {
read: 2, # i.e. 2 seconds
write: 3, # i.e. 3 seconds
connect: 4, # i.e. 4 seconds
})
```

### Chat

Clients that support chat (e.g. Anthropic w/ "Claude", Google w/ "Gemini", Mistral w/ "LeChat", OpenAI w/ "ChatGPT", etc) generate completions using the following calls:

#### Completions using a Simple Prompt

Generating a completion is as simple as sending in the text:

```ruby
completion = client.chat('Tell me a joke.')
completion.text # 'Why don't scientists trust atoms? They make up everything!'
```

#### Completions using a Complex Prompt

More complex completions are generated using a block w/ various system / user messages:

```ruby
completion = client.chat do |prompt|
prompt.system 'You are a helpful assistant with an expertise in animals.'
prompt.user do |message|
message.text 'What animals are in the attached photos?'
message.url('https://.../cat.jpeg', "image/jpeg")
message.url('https://.../dog.jpeg', "image/jpeg")
message.file('./hamster.jpeg', "image/jpeg")
end
end
completion.text # 'They are photos of a cat, a cat, and a hamster.'
```

#### Completions using Streaming via Proc

A real-time stream of messages can be generated by passing in a proc:

```ruby
stream = proc do |chunk|
print(chunk.text) # '...'
end
client.chat('Tell me a joke.', stream:)
```

#### Completion using Streaming via IO

The above code can also be supplied any IO (e.g. `File`, `$stdout`, `$stdin`, etc):

```ruby
client.chat('Tell me a story', stream: $stdout)
```

#### Completion with Tools

A chat can also be initialized with tools:

```ruby
tool = OmniAI::Tool.new(
proc { |location:, unit: 'Celsius'| "#{rand(20..50)}° #{unit} in #{location}" },
name: 'Weather',
description: 'Lookup the weather in a location',
parameters: OmniAI::Tool::Parameters.new(
properties: {
location: OmniAI::Tool::Property.string(description: 'e.g. Toronto'),
unit: OmniAI::Tool::Property.string(enum: %w[Celsius Fahrenheit]),
},
required: %i[location]
)
)
client.chat('What is the weather in "London" in Celsius and "Paris" in Fahrenheit?', tools: [tool])
```

### Transcribe

Clients that support transcribe (e.g. OpenAI w/ "Whisper") convert recordings to text via the following calls:

#### Transcriptions with Path

```ruby
transcription = client.transcribe("example.ogg")
transcription.text # '...'
```

#### Transcriptions with Files

```ruby
File.open("example.ogg", "rb") do |file|
transcription = client.transcribe(file)
transcription.text # '...'
end
```

### Speak

Clients that support speak (e.g. OpenAI w/ "Whisper") convert text to recordings via the following calls:

#### Speech with Stream

```ruby
File.open('example.ogg', 'wb') do |file|
client.speak('The quick brown fox jumps over a lazy dog.', voice: 'HAL') do |chunk|
file << chunk
end
end
```

#### Speech with File

```ruby
tempfile = client.speak('The quick brown fox jumps over a lazy dog.', voice: 'HAL')
tempfile.close
tempfile.unlink
```

### Embeddings

Clients that support generating embeddings (e.g. OpenAI, Mistral, etc.) convert text to embeddings via the following:

```ruby
response = client.embed('The quick brown fox jumps over a lazy dog')
response.usage #
response.embedding # [0.1, 0.2, ...] >
```

Batches of text can also be converted to embeddings via the following:

```ruby
response = client.embed([
'',
'',
])
response.usage #
response.embeddings.each do |embedding|
embedding # [0.1, 0.2, ...]
end
```

## CLI

OmniAI packages a basic command line interface (CLI) to allow for exploration of various APIs. A detailed CLI documentation can be found via help:

```bash
omniai --help
```

### Chat

#### w/ a Prompt

```bash
omniai chat "What is the coldest place on earth?"
```

```
The coldest place on earth is Antarctica.
```

#### w/o a Prompt

```bash
omniai chat --provider="openai" --model="gpt-4" --temperature="0.5"
```

```
Type 'exit' or 'quit' to abort.
# What is the warmet place on earth?
```

```
The warmest place on earth is Africa.
```

### Embed

#### w/ input

```bash
omniai embed "The quick brown fox jumps over a lazy dog."
```

```
0.0
...
```

#### w/o input

```bash
omniai embed --provider="openai" --model="text-embedding-ada-002"
```

```
Type 'exit' or 'quit' to abort.
# Whe quick brown fox jumps over a lazy dog.
```

```
0.0
...
```

### MCP

[MCP](https://modelcontextprotocol.io/introduction) is an open protocol designed to standardize giving context to LLMs. The OmniAI implementation supports building an MCP server that operates via the [stdio](https://modelcontextprotocol.io/docs/concepts/transports) transport.

**main.rb**

```ruby
class Weather < OmniAI::Tool
description "Lookup the weather for a location"

parameter :location, :string, description: "A location (e.g. 'London' or 'Madrid')."
required %i[location]

# @param location [String] required
# @return [String]
def execute(location:)
case location
when 'London' then 'Rainy'
when 'Madrid' then 'Sunny'
end
end
end

transport = OmniAI::MCP::Transport::Stdio.new
mcp = OmniAI::MCP::Server.new(tools: [Weather.new])
mcp.run(transport:)
```

```bash
ruby main.rb
```

```bash
{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/call",
"params": { "name": "echo", "arguments": { "message": "Hello, world!" } }
}
```