https://github.com/kuixu/3d-deep-learning
3D Deep Learning works
https://github.com/kuixu/3d-deep-learning
3d 3d-shapes deep-learning volumetric-data
Last synced: 27 days ago
JSON representation
3D Deep Learning works
- Host: GitHub
- URL: https://github.com/kuixu/3d-deep-learning
- Owner: kuixu
- License: mit
- Created: 2016-09-12T18:53:33.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2019-05-10T03:52:06.000Z (almost 6 years ago)
- Last Synced: 2025-02-09T20:45:35.282Z (3 months ago)
- Topics: 3d, 3d-shapes, deep-learning, volumetric-data
- Size: 16.6 KB
- Stars: 141
- Watchers: 10
- Forks: 36
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# 3d-deep-learning
3D Deep Learning works## Tasks
### 3D Representation
#### Spherical CNNs
- Taco S. Cohen, Spherical CNNs, ICLR 2018 Best paper \[[paper](https://openreview.net/forum?id=Hkbd5xZRb)\]
- Learning SO\(3\) Equivariant Representations with Spherical CNNs \[[paper](https://arxiv.org/pdf/1711.06721v2.pdf)] [[code](https://github.com/daniilidis-group/spherical-cnn)]
- Deep Learning Advances on Different 3D Data
Representations: A Survey \[[paper](https://arxiv.org/pdf/1808.01462.pdf)\]### 3D Classification
#### Datasets
- [ModelNet10/40](http://3dshapenets.cs.princeton.edu)
#### Networks
- 3D CNN
- [3D-DenseNet](https://github.com/barrykui/3ddensenet.torch)
- Voxnet: A 3d convolutional neural network for real-time object recognition, IROS 2015. \[[code](https://github.com/dimatura/voxnet)\] \[[paper](http://arxiv.org/abs/1505.00880)\]
- [3D-NIN, network in network]
- VRN Ensemble, Generative and discriminative voxel modeling with convolutional neural networks, arxiv \[[paper](https://arxiv.org/pdf/1608.04236.pdf)] \[[code](https://github.com/ajbrock/Generative-and-Discriminative-Voxel-Modeling)\]
- Voxception-Resnet Blocks
- 2D CNN
- MVCNN, Learned-Miller.Multi- view convolutional neural networks for 3d shape recognition, ICCV2015 \[[project](http://vis-www.cs.umass.edu/mvcnn/)\] \[[code](https://github.com/suhangpro/mvcnn)\] \[[paper](http://arxiv.org/abs/1505.00880)\]\[[data](http://maxwell.cs.umass.edu/mvcnn-data/)\] \[[video](http://vis-www.cs.umass.edu/mvcnn/docs/1694_video.mp4)\]
- Point
- PointNet \[[project](http://stanford.edu/~rqi/pointnet/)]\[[paper](http://arxiv.org/abs/1612.00593)]\[[code](https://github.com/charlesq34/pointnet)]\[[video](https://www.youtube.com/watch?v=Cge-hot0Oc0)][[slides](http://stanford.edu/~rqi/pointnet/docs/cvpr17_pointnet_slides.pdf)]
- global pooling
- T-net
- PointNet++ \[[paper](https://arxiv.org/pdf/1706.02413.pdf)\] \[[code](https://github.com/charlesq34/pointnet2)]
- sampling & grouping to learning local feature for fine-gaint objects
- two PointNet
- Graph/tree-based
- Kd-Net, scape from cells: Deep kd- networks for the recognition of 3d point cloud models, arxiv2017 \[[paper](http://arxiv.org/abs/1704.01222)\]
- kd-tree
- Octnet: Learning deep 3d representations at high resolutions, CVPR2017
- octree
- O-cnn: Octree-based convolutional neural networks for 3d shape analysis, TOG2017
- octree
- SO-Net: Self-Organizing Network for Point Cloud Analysis, CVPR2018 \[[paper](https://arxiv.org/abs/1803.04249)\] \[[code](https://github.com/lijx10/SO-Net)\]
- point-to-node kNN search Self-Organizing Map \(SOM\)
- KCNet, Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling, CVPR2018 \[[project](http://vis-www.cs.umass.edu/mvcnn/)\] \[[code](https://github.com/suhangpro/mvcnn)\] \[[paper](http://arxiv.org/abs/1505.00880)\]\[[data](http://maxwell.cs.umass.edu/mvcnn-data/)\] \[[video](http://vis-www.cs.umass.edu/mvcnn/docs/1694_video.mp4)\]
- Kernel Correlation
- Graph Pooling
-### 3D Segmentation
#### Datasets
- [HVSMR](http://segchd.csail.mit.edu/data.html)
- [BRATS Data](https://sites.google.com/site/braintumorsegmentation/home/brats2015)
- [ShapeNet]()#### Networks
- HeartSeg, 3D-FC-Densenet, Automatic 3D Cardiovascular MR Segmentation with
Densely-Connected Volumetric ConvNets - MICCAI 2017 - [[code](https://github.com/yulequan/HeartSeg)]
- 3D-Unet \[[paper](http://lmb.informatik.uni-freiburg.de/Publications/2016/CABR16/cicek16miccai.pdf)]
- ClusterNet: 3D Instance Segmentation in RGB-D Images \[[paper](https://arxiv.org/pdf/1807.08894.pdf)\]
- PointNet \[[project](http://stanford.edu/~rqi/pointnet/)]\[[paper](http://arxiv.org/abs/1612.00593)]\[[code](https://github.com/charlesq34/pointnet)]\[[video](https://www.youtube.com/watch?v=Cge-hot0Oc0)][[slides](http://stanford.edu/~rqi/pointnet/docs/cvpr17_pointnet_slides.pdf)]
- PointNet++ \[[paper](https://arxiv.org/pdf/1706.02413.pdf)\] \[[code](https://github.com/charlesq34/pointnet2)]
- KCNet, Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling, CVPR2018 \[[project](http://vis-www.cs.umass.edu/mvcnn/)\] \[[code](https://github.com/suhangpro/mvcnn)\] \[[paper](http://arxiv.org/abs/1505.00880)\]\[[data](http://maxwell.cs.umass.edu/mvcnn-data/)\] \[[video](http://vis-www.cs.umass.edu/mvcnn/docs/1694_video.mp4)\]
- SO-Net: Self-Organizing Network for Point Cloud Analysis, CVPR2018 \[[paper](https://arxiv.org/abs/1803.04249)\] \[[code](https://github.com/lijx10/SO-Net)\]
- 3D Shape Segmentation with Projective Convolutional Networks. CVPR2017. [`Project`](http://people.cs.umass.edu/~kalo/papers/shapepfcn/) [`Poster`](http://people.cs.umass.edu/~kalo/papers/shapepfcn/ShapePFCN_poster.pdf) [`Presentation`](http://people.cs.umass.edu/~kalo/papers/shapepfcn/ShapePFCN_poster.pdf)
- nnU-Net: Breaking the Spell on Successful Medical Image Segmentation \[[paper](https://arxiv.org/pdf/1904.08128.pdf)\] \[[code](https://github.com/MIC-DKFZ/nnunet)]### 3D Object Detection
#### Datasets
Data types: RGBD, Flow, Laser
- [KITTI](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d)
- [KITTI Object Visualization Tool](https://github.com/barrykui/kitti_object_vis)#### Networks
- MV3D, Multi-View 3D Object Detection Network for Autonomous Driving \[[paper](https://arxiv.org/pdf/1611.07759)\] [[code](https://github.com/bostondiditeam/MV3D)]
- Avod, Joint 3D Proposal Generation and Object Detection from View Aggregation \[[paper](https://arxiv.org/abs/1712.02294)\] [[code](https://github.com/kujason/avod)]
- F-PointNet, Frustum PointNets for 3D Object Detection from RGB-D Data \[[paper](https://arxiv.org/abs/1711.08488)\] \[[code](https://github.com/charlesq34/frustum-pointnets)\]
- VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection \[[paper](https://arxiv.org/abs/1711.06396)\]
- PIXOR: Real-time 3D Object Detection from Point Clouds - CVPR 2018 - \[[paper](http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_PIXOR_Real-Time_3D_CVPR_2018_paper.pdf)\] \[[code](https://github.com/charlesq34/frustum-pointnets)\]
- 3D Object Proposals using Stereo Imagery for Accurate Object Class Detection \[[paper](https://arxiv.org/abs/1608.07711)\]
- 3D Bounding Box Estimation Using Deep Learning and Geometry \[[paper](https://arxiv.org/abs/1612.00496)\] \[[code](https://github.com/smallcorgi/3D-Deepbox)\]
- [Learning 3D Object Orientations From Synthetic Images](http://cs231n.stanford.edu/reports/rqi_final_report.pdf)### 3D Reconstruction & Generation
#### Datasets
Data types: RGBD, Flow, Laser
- ShapeNet#### Networks
- SO-Net: Self-Organizing Network for Point Cloud Analysis, CVPR2018 \[[paper](https://arxiv.org/abs/1803.04249)\] \[[code](https://github.com/lijx10/SO-Net)\]
- 3D-GAN \[[paper](https://arxiv.org/abs/1612.00496)\] \[[code](https://github.com/zck119/3dgan-release)\]
- Generating 3D Adversarial Point Clouds \[[paper](https://arxiv.org/pdf/1809.07016.pdf)\]### 3D Human Pose Estimation
#### Datasets
Data types: RGBD, Flow, Laser
- ShapeNet#### Networks
- Synthetic Occlusion Data Augmentation -2018 ECCV PoseTrack Challenge - \[[paper](https://arxiv.org/abs/1809.04987)\] \[[code](https://github.com/isarandi/synthetic-occlusion)\]
- Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach - ICCV 2017 - \[[paper](https://arxiv.org/abs/1809.04987)\] \[[code](https://github.com/xingyizhou/pose-hg-3d)\] \[[code-pytorch](https://github.com/xingyizhou/Pytorch-pose-hg-3d)
- 3D human pose estimation from depth maps using a deep combination of poses \[[paper](https://arxiv.org/pdf/1807.05389.pdf)\]## CVPR2016 Tutorial: 3D Deep Learning with Marvin
- [CVPR2016 Tutorial: 3D Deep Learning with Marvin](http://vision.princeton.edu/event/cvpr16/3DDeepLearning/)
- [3D Shape Retrieval](https://shapenet.cs.stanford.edu/shrec16/)
- [C3D](https://github.com/facebook/C3D), [website](http://www.cs.dartmouth.edu/~dutran/c3d/)
- [Video Caffe(C3D)] [[code](https://github.com/chuckcho/video-caffe)]
- [DeepMedic, Brain Lesion Segmentation] [[code(https://github.com/Kamnitsask/deepmedic)]
- [3D Keypoint Detection and Feature Description](http://staffhome.ecm.uwa.edu.au/~00051632/page100.html)## Codes and libs for 3D
- [util3d](https://github.com/fyu/util3d)
- [spectral-lib](https://github.com/mbhenaff/spectral-lib)
- [3D-Caffe](https://github.com/yulequan/3D-Caffe#installation)
- [3D-ResNets-PyTorch](https://github.com/kenshohara/3D-ResNets-PyTorch)## DL on Medical Image
- [Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5027738/)## More 3D Papers
see [ [3D-Machine-Learning](https://github.com/timzhang642/3D-Machine-Learning)]