An open API service indexing awesome lists of open source software.

https://github.com/kuixu/3ddensenet.torch

3D DenseNet(torch version) for ModelNet40 dataset
https://github.com/kuixu/3ddensenet.torch

3d-densenet 3d-models 3d-volume 3dshapenet densenet mesh modelnet

Last synced: about 1 month ago
JSON representation

3D DenseNet(torch version) for ModelNet40 dataset

Awesome Lists containing this project

README

        

3D DenseNet in torch
============================

3D DenseNet is using 3D Convolutional(VolumetricConvolution in torch), Pooling, BatchNormalization layers with 3D kernel. This implements is based on [DenseNet](https://github.com/liuzhuang13/DenseNet) and [fb.resnet.torch](https://github.com/facebook/fb.resnet.torch/). DenseNet introduced in the paper "Densely Connected Convolutional Networks" (CVPR 2017, Best Paper Award)

## Requirements
See the [installation instructions](https://github.com/facebook/fb.resnet.torch/blob/master/INSTALL.md) for a step-by-step guide.
- luarock install hdf5 nninit
- Download the [ModelNet40](http://3dshapenets.cs.princeton.edu/) dataset and hdf5 format ([Google Drive](https://drive.google.com/file/d/0B1S5mVkJgRwqRUZjakNuMi1yck0/view?usp=sharing), [Baidu Cloud Disk](https://pan.baidu.com/s/1hsN81qG))

## Dataset
1. Download data through above link;
2. and modify the file path in `train.list` and `test.list` file;
3. then modify the `datadir` variable in `examples/run_modelnet40.sh`.

## Training
See the [training recipes](https://github.com/facebook/fb.resnet.torch/blob/master/TRAINING.md) for addition examples.

For Modelnet40, just run shell `examples/run_modelnet40.sh 0,1`, `0,1` is the GPU ids with multi-GPU supported.
```bash
cd examples
./run_modelnet40_h5.sh 0,1
```

## Trained models

#### modelnet40_60x validation error rate

| Network | Top-1 error | Top-5 error |
| -------------- | ----------- | ----------- |
| Voxnet | 13.74 | 1.92 |
| DenseNet-20-12 | 12.99 | 2.03 |
| DenseNet-30-12 | 12.11 | 1.94 |
| DenseNet-30-16 | 11.08 | 1.61 |
| DenseNet-40-12 | 11.57 | 1.78 |
## Notes

This implementation differs from the ResNet paper in a few ways:

**3D Convolution**: We use the [VolumetricConvolution](https://github.com/torch/nn/blob/master/doc/convolution.md) to implement 3D Convolution.