https://github.com/kumar-shridhar/cnn_architectures
Keras Implementation of major CNN architectures
https://github.com/kumar-shridhar/cnn_architectures
convolutional-neural-networks densenet-keras inception-resnet-v2 keras resnet-50
Last synced: 3 months ago
JSON representation
Keras Implementation of major CNN architectures
- Host: GitHub
- URL: https://github.com/kumar-shridhar/cnn_architectures
- Owner: kumar-shridhar
- License: gpl-3.0
- Created: 2018-01-20T21:00:21.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2018-07-03T19:42:57.000Z (over 7 years ago)
- Last Synced: 2025-04-12T19:40:00.932Z (6 months ago)
- Topics: convolutional-neural-networks, densenet-keras, inception-resnet-v2, keras, resnet-50
- Language: Jupyter Notebook
- Homepage:
- Size: 50.8 KB
- Stars: 15
- Watchers: 1
- Forks: 3
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Keras Implementation of all major CNN Architectures
## Requirements
* NumPy >= 1.11.1
* Keras >= 2.0 (Using TensorFlow in backend)
* Python >= 3.4## Available Architectures
* VGG 16
* Inception V3
* ResNet 50
* DenseNet
* Inception V4
* InceptionResnet V2
* NASNet## Steps
* In the first line Import the name of the model by using the import command and specifying the model name:
* for Resnet
* Specify the dir path of the training and validation dataset in the PATH and size of the image in sz and the batch size.
*