An open API service indexing awesome lists of open source software.

https://github.com/kumar-shridhar/online-toxicity-detection

APOLLO-1: Online Toxicity Detection
https://github.com/kumar-shridhar/online-toxicity-detection

attention-model bert-model deep-learning nlp nlp-machine-learning roberta toxic-comment-classification

Last synced: 6 months ago
JSON representation

APOLLO-1: Online Toxicity Detection

Awesome Lists containing this project

README

          

[![Python 3.7+](https://img.shields.io/badge/python-3.7+-blue.svg)](https://www.python.org/downloads/release/python-376/)
[![TensorFlow 2.1](https://img.shields.io/badge/tensorflow-2.1.1-blue.svg)](https://github.com/tensorflow/tensorflow/releases)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/kumar-shridhar/APOLLO-1/blob/master/LICENSE)

![.](apollo/Frontend/static/img/LogoMakr_2DoISf.png)

##### Read more about the project in our [blog](https://medium.com/@shridhar743/are-you-indulging-in-a-toxic-conversation-c67708b8895).

# Online Toxicity Detection

Project **Apollo** consist of a series of projects that are aimed at using Deep Learning for various applications. This work presents the first project: **APOLLO-1**. This project is aimed at developing an application that detects **toxicity in an online conversation**.

![.](apollo/Frontend/static/img/APOLLO1.gif)

---------------------------------------------------------------------------------------------------------

## How to run

1. Clone the repo: ``` git clone https://github.com/kumar-shridhar/Online-Toxicity-Detection.git```
2. Make sure you have anaconda installed. If not, check [here](https://docs.anaconda.com/anaconda/install/).
3. Install all the requirements using conda yaml: ```conda env create -f environment_{os}.yml``` where ```{os}``` can be ```Windows``` or ```Linux```.
4. Download saved model from [here](https://drive.google.com/file/d/1RNd4L_zGVrFF_Cl-6KfoHIInMO-5A0e3/view?usp=sharing)
5. Unzip the model and save in ```Online-Toxicity-Detection/apollo/inference``` folder.
6. Run command:
* ``` cd Online-Toxicity-Detection```
* ``` python apollo/Frontend/app.py```
7. Go to the link in the console and provide the YouTube URL, and adjust the ```sensitivity``` and ```number of comments```. The results will be displayed in a chart form.
8. You can export the ```.csv``` file of the final results by clicking on ```export results```.

---------------------------------------------------------------------------------------------------------

## References

* [Egbertbouman](https://github.com/egbertbouman/youtube-comment-downloader)
* [HuggingFace](https://github.com/huggingface/transformers)
* [Xhlulu](https://www.kaggle.com/xhlulu/jigsaw-tpu-xlm-roberta)

---------------------------------------------------------------------------------------------------------

### Contact

Feel free to contact the authors in case of any issues.

[Naveed Akram](https://github.com/n-akram), [Ritu Yadav](https://github.com/RituYadav92), [Venkatesh Iyer](https://github.com/venkyiyer)
[Sadique Adnan Siddiqui](https://github.com/sadique-adnan), [Ashutosh Mishra](https://github.com/ashutoshmishra1014), [Kumar Shridhar](https://kumar-shridhar.github.io/)