Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/kwaivgi/uniaa

Unified Multi-modal IAA Baseline and Benchmark
https://github.com/kwaivgi/uniaa

benchmark dataset image-aesthetic-assessment llava mllm

Last synced: 4 days ago
JSON representation

Unified Multi-modal IAA Baseline and Benchmark

Awesome Lists containing this project

README

        







# Uniaa: A Unified Multi-modal Image Aesthetic Assessment Baseline and Benchmark

The Unified Multi-modal Image Aesthetic Assessment Framework, containing a baseline (a) and a benchmark (b). The aesthetic perception performance of UNIAA-LLaVA and other MLLMs is shown in (c).




The IAA Datasets Conversion Paradigm for UNIAA-LLaVA.



The UNIAA-Bench overview. (a) UNIAA-QA contains 5354 Image-Question-Answer samples and (b) UNIAA-Describe contains 501 Image-Description samples. (c) For open-source MLLMs, Logits can be extracted to calculate the score.



## Release
- [9/25] 🔥 Our [UNIAA](https://huggingface.co/datasets/zkzhou/UNIAA) data is released! The corresponding fine-tuning and evaluation code can be found in the GitHub repository folder.
- [4/15] 🔥 We build the page of UNIAA!

## Performance

### Aesthetic Perception Performance

### Aesthetic Description Performance

### Aesthetic Assessment Performance
#### Zero-shot

#### Supervised learning on AVA and TAD66K

## Training on data of UNIAA
#### Step 1: Download Images and Json files
#### Step 2: Training On Specific MLLM

## Test on UNIAA-Bench
### For Aesthetic Perception
#### Step 1: Download Images and Json files
#### Step 2: Run the inference code
#### Step 3: Calculate the score

### For Aesthetic Description
#### Step 1: Download Images and Json files
#### Step 2: Run the inference code

## Citation

If you find UNIAA useful for your your research and applications, please cite using this BibTeX:
```bibtex
@misc{zhou2024uniaa,
title={UNIAA: A Unified Multi-modal Image Aesthetic Assessment Baseline and Benchmark},
author={Zhaokun Zhou and Qiulin Wang and Bin Lin and Yiwei Su and Rui Chen and Xin Tao and Amin Zheng and Li Yuan and Pengfei Wan and Di Zhang},
year={2024},
eprint={2404.09619},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```

## Contact
If you have any questions, please feel free to email [email protected] and [email protected].