Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kyegomez/MambaByte
Implementation of MambaByte in "MambaByte: Token-free Selective State Space Model" in Pytorch and Zeta
https://github.com/kyegomez/MambaByte
ai artificial-intelligence gpt4v machine-learning mamba megabyte ml multi-modality tokenizer
Last synced: 3 months ago
JSON representation
Implementation of MambaByte in "MambaByte: Token-free Selective State Space Model" in Pytorch and Zeta
- Host: GitHub
- URL: https://github.com/kyegomez/MambaByte
- Owner: kyegomez
- License: mit
- Created: 2024-01-26T01:23:25.000Z (12 months ago)
- Default Branch: main
- Last Pushed: 2024-08-23T12:52:19.000Z (5 months ago)
- Last Synced: 2024-08-31T05:22:16.233Z (5 months ago)
- Topics: ai, artificial-intelligence, gpt4v, machine-learning, mamba, megabyte, ml, multi-modality, tokenizer
- Language: Python
- Homepage: https://discord.gg/Czg5rpMZaC
- Size: 2.16 MB
- Stars: 100
- Watchers: 6
- Forks: 4
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
- Awesome-Mamba - MambaByte: Token-free Selective State Space Model
- Awesome-state-space-models - Token-free language models
README
[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# MambaByte
Implementation of MambaByte in "MambaByte: Token-free Selective State Space Model" in Pytorch and Zeta. Note this will be a higher performance implementation of Mamba with parallel scan## Installation
```bash
pip install mambabyte
```# Usage
```python
import torch
from mambabyte import MambaConfig, Mambax = torch.randn(2, 3, 4)
config = MambaConfig(
dim = 4,
depth = 3,
dt_rank = 2,
d_state = 2,
expand_factor = 2,
d_conv = 3,
dt_min = 0.001,
dt_max = 0.1,
dt_init = "random",
dt_scale = 1.0,
bias = False,
conv_bias = True,
pscan = True
)model = Mamba(config)
out = model(x)
print(out)
```
# License
MIT