Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kyegomez/aurora
Implementation of the paper: "Aurora: A Foundation Model of the Atmosphere" in PyTorch
https://github.com/kyegomez/aurora
agents ai ml multi-agent weather weather-prediction
Last synced: 3 months ago
JSON representation
Implementation of the paper: "Aurora: A Foundation Model of the Atmosphere" in PyTorch
- Host: GitHub
- URL: https://github.com/kyegomez/aurora
- Owner: kyegomez
- License: mit
- Created: 2024-06-04T15:29:00.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2024-10-07T20:33:13.000Z (4 months ago)
- Last Synced: 2024-10-10T20:19:46.984Z (4 months ago)
- Topics: agents, ai, ml, multi-agent, weather, weather-prediction
- Language: Python
- Homepage:
- Size: 2.98 MB
- Stars: 12
- Watchers: 4
- Forks: 2
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
README
[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# Aurora
[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/agora-999382051935506503) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)![Aurora](aurora.png)
Community and Open Source Implementation of the paper: "Aurora: A Foundation Model of the Atmosphere" in PyTorch: [Paper link](https://arxiv.org/abs/2405.13063)
## Install
```bash
pip3 install aurora-torch
```## Example
```python
import torch
from aurora_torch.main import SwinTransformerUNet3D
from loguru import logger# Test with random input tensor of shape (B, D, H, W, C)
B, D, H, W, C = 2, 16, 64, 64, 32
model = SwinTransformerUNet3D(input_dim=C, output_dim=C)
input_tensor = torch.rand(B, D, H, W, C)# Forward pass through the model
output = model(input_tensor)
logger.info(f"Output shape: {output.shape}")```
# License
MIT# Bibtex
```bibtex
@misc{bodnar2024aurora,
title={Aurora: A Foundation Model of the Atmosphere},
author={Cristian Bodnar and Wessel P. Bruinsma and Ana Lucic and Megan Stanley and Johannes Brandstetter and Patrick Garvan and Maik Riechert and Jonathan Weyn and Haiyu Dong and Anna Vaughan and Jayesh K. Gupta and Kit Tambiratnam and Alex Archibald and Elizabeth Heider and Max Welling and Richard E. Turner and Paris Perdikaris},
year={2024},
eprint={2405.13063},
archivePrefix={arXiv},
primaryClass={physics.ao-ph}
}
```# References
- [Blog Release: Introducing Aurora: The first large-scale foundation model of the atmosphere](https://www.microsoft.com/en-us/research/blog/introducing-aurora-the-first-large-scale-foundation-model-of-the-atmosphere/)
- [Paper Link](https://arxiv.org/abs/2405.13063)