An open API service indexing awesome lists of open source software.

https://github.com/kyegomez/liqudnet

Implementation of Liquid Nets in Pytorch
https://github.com/kyegomez/liqudnet

artificial-intelligence attention-is-all-you-need attention-mechanism liquidnets machine-learning recurrent-neural-network recurrent-neural-networks

Last synced: 7 months ago
JSON representation

Implementation of Liquid Nets in Pytorch

Awesome Lists containing this project

README

          

[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)

# LiquidNet
This is a simple implementation of the Liquid net official repo translated into pytorch for simplicity. [Find the original repo here:](https://github.com/raminmh/liquid_time_constant_networks)

## Install
`pip install liquidnet`

## Usage
```python
import torch
from liquidnet.main import LiquidNet

# Create an LiquidNet with a specified number of units
num_units = 64
ltc_cell = LiquidNet(num_units)

# Generate random input data with batch size 4 and input size 32
batch_size = 4
input_size = 32
inputs = torch.randn(batch_size, input_size)

# Initialize the cell state (hidden state)
initial_state = torch.zeros(batch_size, num_units)

# Forward pass through the LiquidNet
outputs, final_state = ltc_cell(inputs, initial_state)

# Print the shape of outputs and final_state
print("Outputs shape:", outputs.shape)
print("Final state shape:", final_state.shape)

```

## `VisionLiquidNet`
- Simple model with 2 convolutions with 2 max pools, alot of room for improvement

```python
import torch
from liquidnet.vision_liquidnet import VisionLiquidNet

# Random Input Image
x = torch.randn(4, 3, 32, 32)

# Create a VisionLiquidNet with a specified number of units
model = VisionLiquidNet(64, 10)

# Forward pass through the VisionLiquidNet
print(model(x).shape)

```

# Citation
```bibtex
@article{DBLP:journals/corr/abs-2006-04439,
author = {Ramin M. Hasani and
Mathias Lechner and
Alexander Amini and
Daniela Rus and
Radu Grosu},
title = {Liquid Time-constant Networks},
journal = {CoRR},
volume = {abs/2006.04439},
year = {2020},
url = {https://arxiv.org/abs/2006.04439},
eprinttype = {arXiv},
eprint = {2006.04439},
timestamp = {Fri, 12 Jun 2020 14:02:57 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2006-04439.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}

```

# License
MIT

# Todo:
- [ ] Implement LiquidNet for vision and train on CIFAR