https://github.com/kyegomez/reka-torch
Implementation of the model: "Reka Core, Flash, and Edge: A Series of Powerful Multimodal Language Models" in PyTorch
https://github.com/kyegomez/reka-torch
Last synced: 6 months ago
JSON representation
Implementation of the model: "Reka Core, Flash, and Edge: A Series of Powerful Multimodal Language Models" in PyTorch
- Host: GitHub
- URL: https://github.com/kyegomez/reka-torch
- Owner: kyegomez
- License: mit
- Created: 2024-04-15T20:29:34.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2025-03-17T21:20:24.000Z (7 months ago)
- Last Synced: 2025-03-23T11:18:00.934Z (7 months ago)
- Language: Python
- Size: 2.16 MB
- Stars: 30
- Watchers: 1
- Forks: 3
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
README
[](https://discord.gg/qUtxnK2NMf)
# Reka Torch
Implementation of the model: "Reka Core, Flash, and Edge: A Series of Powerful Multimodal Language Models" in PyTorch. [PAPER LINK](https://publications.reka.ai/reka-core-tech-report.pdf)## Install
`pip3 install -U reka-torch`## Usage
```python
import torch # Importing the torch library
from reka_torch.model import Reka # Importing the Reka model from the reka_torch packagetext = torch.randint(0, 10000, (2, 512)) # Generating a random tensor of shape (2, 512) with values between 0 and 10000
img = torch.randn(2, 3, 224, 224) # Generating a random tensor of shape (2, 3, 224, 224) with values
audio = torch.randn(2, 1000) # Generating a random tensor of shape (2, 1000) with values
video = torch.randn(2, 3, 16, 224, 224) # Generating a random tensor of shape (2, 3, 16, 224, 224) with values
model = Reka(512) # Creating an instance of the Reka model with input size 512
out = model(text, img, audio, video) # Forward pass through the model with the input tensors
print(out.shape) # Printing the shape of the output tensor
```
# License
MIT