Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kyegomez/simpleunet
An simple implementation of Unet because all the implementations i've seen are wayy tooo complicated.
https://github.com/kyegomez/simpleunet
artificial-intelligence biomedical biomedical-image-processing computer-vision gpt4 image image-classification image-segmentation texttovide unet vllm
Last synced: 2 months ago
JSON representation
An simple implementation of Unet because all the implementations i've seen are wayy tooo complicated.
- Host: GitHub
- URL: https://github.com/kyegomez/simpleunet
- Owner: kyegomez
- License: mit
- Created: 2023-09-19T15:48:08.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-10-07T23:26:31.000Z (3 months ago)
- Last Synced: 2024-10-14T02:36:38.881Z (3 months ago)
- Topics: artificial-intelligence, biomedical, biomedical-image-processing, computer-vision, gpt4, image, image-classification, image-segmentation, texttovide, unet, vllm
- Language: Python
- Homepage: https://discord.gg/qUtxnK2NMf
- Size: 205 KB
- Stars: 7
- Watchers: 3
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
README
[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# Unet
My implemenetation of a modular Unet from the paper "U-Net: Convolutional Networks for Biomedical Image Segmentation"[Paper Link](https://arxiv.org/abs/1505.04597)
# Appreciation
* Lucidrains
* Agorians# Install
`pip install unet-torch`# Usage
```python
import torch
from unet.model import Unetmodel = Unet(n_channels=3, n_classes=1)
inputs = torch.randn(1, 3, 256, 256)
outputs = model(inputs)
print(outputs.size)
print(outputs)
```
# License
MIT# Citations
```bibtex
@misc{1505.04597,
Author = {Olaf Ronneberger and Philipp Fischer and Thomas Brox},
Title = {U-Net: Convolutional Networks for Biomedical Image Segmentation},
Year = {2015},
Eprint = {arXiv:1505.04597},
}
```