Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/kylebarron/keplergl_cli

One-line geospatial data visualization using Kepler.gl
https://github.com/kylebarron/keplergl_cli

cli data-visualization geospatial kepler-gl mapbox python

Last synced: 23 days ago
JSON representation

One-line geospatial data visualization using Kepler.gl

Awesome Lists containing this project

README

        

# keplergl_cli

A CLI and Python API for quickly viewing geospatial data in Kepler.gl.

## Overview

Uber's open-source [kepler.gl](https://kepler.gl/) is a great browser-based
platform for interactively visualizing geospatial data. The `keplergl` Python package's [included
documentation](https://github.com/keplergl/kepler.gl/blob/master/docs/keplergl-jupyter/user-guide.md)
is almost entirely directed at use within Jupyter, and it took a little bit of
work to figure out how to use it from a non-Jupyter Python environment.

This package is a simple wrapper to quickly get your data into kepler.gl. From
the command line, it's as simple as:

```
export MAPBOX_API_KEY=...
keplergl data1.geojson data2.shp data3.gdb
cat data.geojson | keplergl
```

from Python:

```py
from keplergl_cli import Visualize
Visualize(data)
```

![Example gif](https://raw.githubusercontent.com/kylebarron/keplergl_cli/master/assets/example.gif)

## Features

- One-line data visualization
- Automatically converts Shapely objects to GeoJSON
- Supports piped GeoJSON input
- No configuration needed

## Install

**Mapbox API key**: in order to display Mapbox-hosted maps, you need to provide
a Mapbox API key. Go to [Mapbox.com](https://account.mapbox.com/access-tokens)
to get an API key.

**Package install**:

```
pip install keplergl_cli
```

This package has dependencies on `geojson`, `shapely`, and `geopandas`. If you
get errors when installing this package through pip, it may be easier to first
install dependencies through Conda, then install this package. I.e.:

```
conda install geojson shapely geopandas -c conda-forge
pip install keplergl_cli
```

## Usage

### CLI

The CLI is installed under the name `kepler`:

```
export MAPBOX_API_KEY=...
kepler --style=outdoors data.geojson
kepler --style=dark data1.geojson shapefile.shp geodatabase.gdb -l layer1 -l layer2
cat data.geojson | kepler
```

You can add `export MAPBOX_API_KEY` to your `.bashrc` or `.zshrc` to not have to
run that step each time.

You can supply filename paths to data in any [vector format readable by
GeoPandas/GDAL](https://gdal.org/drivers/vector/index.html). Alternatively you
can supply GeoJSON or newline-delimited GeoJSON on stdin.

Supply `--help` to see the CLI's help menu:

```
> kepler --help

Usage: kepler [OPTIONS] FILES...

Interactively view geospatial data using kepler.gl

Options:
-l, --layer TEXT Layer names. If not provided, will display all layers
--api_key TEXT Mapbox API Key. Must be provided on the command line or
exist in the MAPBOX_API_KEY environment variable.
--style TEXT Mapbox style. Accepted values are: streets, outdoors,
light, dark, satellite, satellite-streets, or a custom
style URL. [default: streets]
--help Show this message and exit.
```

### Python API

Simplest usage:

```py
import geopandas as gpd
from keplergl_cli import Visualize

# Create your geospatial objects
gdf = gpd.GeoDataFrame(...)

# Visualize one or multiple objects at a time
Visualize(gdf, api_key=MAPBOX_API_KEY)
Visualize([gdf, shapely_object, geojson_string], api_key=MAPBOX_API_KEY)
```

More detail over the objects in your map:

```py
from keplergl_cli import Visualize
vis = Visualize(api_key=MAPBOX_API_KEY)
vis.add_data(data=data, names='name of layer')
vis.add_data(data=data2, names='name of layer')
html_path = vis.render(open_browser=True, read_only=False)
```

**Visualize**

```py
Visualize(data=None, names=None, read_only=False, api_key=None, style=None)
```

- `data` (either `None`, a single data object, or a list of data objects):

A data object may be a GeoDataFrame from the
[GeoPandas](http://geopandas.org/) library, any geometry from the
[Shapely](https://shapely.readthedocs.io/en/stable/manual.html) library, any
object from the [GeoJSON](https://github.com/jazzband/geojson) library, or
any GeoJSON `str` or `dict`. You can also provide a CSV file as a
string or a Pandas DataFrame if the DataFrame has `Latitude` and `Longitude`
columns. Full documentation on the accepted data formats is
[here](https://github.com/keplergl/kepler.gl/blob/master/docs/keplergl-jupyter/user-guide.md#3-data-format).

You can provide either a single data object, or an iterable containing
multiple allowed data objects.

If data is not `None`, then Visualize(data) will perform all steps, including
rendering the data to an HTML file and opening it in a new browser tab.

- `names` (either `None`, a string, or a list of strings):

This defines the names shown for each layer in Kepler.gl. If `None`, the
layers will be named `data_0`, `data_1`, and so on. Otherwise, if `data` is
a single object, `names` should be a string, and if `data` is an iterable,
then `names` should be an iterable of strings.

- `read_only` (`boolean`): If `True`, hides side panel to disable map customization
- `api_key` (`string`): Mapbox API key. Go to [Mapbox.com](https://account.mapbox.com/access-tokens)
to get an API key. If not provided, the `MAPBOX_API_KEY` environment
variable must be set, or the `style_url` must point to a `style.json` file
that does not use Mapbox map tiles.
- `style` (`string`): The basemap style to use. Standard Mapbox options are:

- `streets`
- `outdoors`
- `light`
- `dark`
- `satellite`
- `satellite-streets`

The default is `streets`. Alternatively, you can supply a path to a custom
style. A custom style created from Mapbox Studio should have a url that
starts with `mapbox://`. Otherwise, a custom style using third-party map
tiles should be a URL to a JSON file that conforms to the [Mapbox Style
Specification](https://docs.mapbox.com/mapbox-gl-js/style-spec/).

**Visualize.add_data()**

```py
Visualize.add_data(data, names=None):
```

- `data` (either a single data object, or a list of data objects):

A data object may be a GeoDataFrame from the
[GeoPandas](http://geopandas.org/) library, any geometry from the
[Shapely](https://shapely.readthedocs.io/en/stable/manual.html) library, any
object from the [GeoJSON](https://github.com/jazzband/geojson) library, or
any GeoJSON string or dictionary. You can also provide a CSV file as a
string or a Pandas DataFrame if the DataFrame has `Latitude` and `Longitude`
columns. Full documentation on the accepted data formats is
[here](https://github.com/keplergl/kepler.gl/blob/master/docs/keplergl-jupyter/user-guide.md#3-data-format).

You can provide either a single data object, or an iterable containing
multiple allowed data objects.

- `names` (either `None`, a string, or a list of strings):

This defines the names shown for each layer in Kepler.gl. If `None`, the
layers will be named `data_0`, `data_1`, and so on. Otherwise, if `data` is
a single object, `names` should be a string, and if `data` is an iterable,
then `names` should be an iterable of strings.

**Visualize.render()**

```py
Visualize.render(open_browser=True, read_only=False)
```

- `read_only` (`boolean`): If `True`, hides side panel to disable map customization
- `open_browser` (`boolean`): If `True`, opens the saved HTML file in the default browser

## Troubleshooting

The most common reasons why a map is not displayed are:

- Missing Mapbox API Key: in order to display Mapbox-hosted maps, you need get [an API key from Mapbox](https://account.mapbox.com/access-tokens) to pass an API key
- Data projection: Kepler.gl works only with data projected into standard WGS84 (latitude, longitude) coordinates. If you have your data in a projected coordinate system, first reproject your data into WGS84 (EPGS 4326), then try again. The CLI attempts to automatically reproject into EPSG 4326, but the Python library doesn't.

If your data seems to be "floating" above the map, this is likely because your
input data have Z coordinates, so kepler.gl displays them in 3-dimensional
space.