Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kzl/decision-transformer
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.
https://github.com/kzl/decision-transformer
Last synced: 1 day ago
JSON representation
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.
- Host: GitHub
- URL: https://github.com/kzl/decision-transformer
- Owner: kzl
- License: mit
- Created: 2021-06-02T09:35:37.000Z (over 3 years ago)
- Default Branch: master
- Last Pushed: 2024-04-29T01:30:45.000Z (8 months ago)
- Last Synced: 2024-12-13T13:03:15.228Z (8 days ago)
- Language: Python
- Size: 256 KB
- Stars: 2,433
- Watchers: 29
- Forks: 452
- Open Issues: 32
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
- awesome-decision-transformer - official - engine](https://github.com/opendilab/DI-engine/blob/main/dizoo/d4rl/entry/d4rl_dt_main.py) (Papers / NeurIPS 2021)
- StarryDivineSky - kzl/decision-transformer
README
# Decision Transformer
Lili Chen\*, Kevin Lu\*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor Mordatch†
\*equal contribution, †equal advising
A link to our paper can be found on [arXiv](https://arxiv.org/abs/2106.01345).
## Overview
Official codebase for [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://sites.google.com/berkeley.edu/decision-transformer).
Contains scripts to reproduce experiments.![image info](./architecture.png)
## Instructions
We provide code in two sub-directories: `atari` containing code for Atari experiments and `gym` containing code for OpenAI Gym experiments.
See corresponding READMEs in each folder for instructions; scripts should be run from the respective directories.
It may be necessary to add the respective directories to your PYTHONPATH.## Citation
Please cite our paper as:
```
@article{chen2021decisiontransformer,
title={Decision Transformer: Reinforcement Learning via Sequence Modeling},
author={Lili Chen and Kevin Lu and Aravind Rajeswaran and Kimin Lee and Aditya Grover and Michael Laskin and Pieter Abbeel and Aravind Srinivas and Igor Mordatch},
journal={arXiv preprint arXiv:2106.01345},
year={2021}
}
```Note: this is not an official Google or Facebook product.
## License
MIT