Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/l30nardosv/reproduce-ia3-moleculardocking
Reproducing IA^3 2020 Paper: "Parallelizing Irregular Computations for Molecular Docking"
https://github.com/l30nardosv/reproduce-ia3-moleculardocking
autodock-gpu cpu gpu molecular-docking molecular-docking-scripts opencl paper reproducible-research
Last synced: about 2 months ago
JSON representation
Reproducing IA^3 2020 Paper: "Parallelizing Irregular Computations for Molecular Docking"
- Host: GitHub
- URL: https://github.com/l30nardosv/reproduce-ia3-moleculardocking
- Owner: L30nardoSV
- License: cc0-1.0
- Created: 2020-10-08T14:12:08.000Z (over 4 years ago)
- Default Branch: main
- Last Pushed: 2022-01-07T17:03:29.000Z (about 3 years ago)
- Last Synced: 2023-06-05T15:35:28.505Z (over 1 year ago)
- Topics: autodock-gpu, cpu, gpu, molecular-docking, molecular-docking-scripts, opencl, paper, reproducible-research
- Language: Shell
- Homepage:
- Size: 293 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[![DOI](https://zenodo.org/badge/302362741.svg)](https://zenodo.org/badge/latestdoi/302362741)
# Reproducing IA^3 2020 Paper: _Parallelizing Irregular Computations for Molecular Docking_
This repository contains the scripts and configuration files used in the _Artifact Appendix_ of the article accepted at:
[The 10th Workshop on Irregular Applications: Architectures and Algorithms (IA^3), 2020](https://hpc.pnl.gov/IA3/IA3/IA3-2020/index.html)
and published on IEEExplore:
https://doi.org/10.1109/IA351965.2020.00008.
## Contents
* Scripts for re-running experiments described in paper
* See bash scripts withtin root folder
* Additional files containing parameters for AutoDock
* See [docking parameter files](./dpf_autodock426) folder
* Output examples of both AutoDock and AutoDock-GPU
* See [docking log](./dlg_examples) folder## Downloads
Required programs and inputs:
* AutoDock-GPU
* https://github.com/ccsb-scripps/AutoDock-GPU
* Data set
* URL: https://doi.org/10.5281/zenodo.4031961
* DOI: `10.5281/zenodo.4031961`## Further information
Additional material include the [paper preprint](https://www.esa.informatik.tu-darmstadt.de/assets/publications/materials/2020/2020_IA3_LVS.pdf) and [presentation slides](https://www.esa.informatik.tu-darmstadt.de/assets/publications/materials/2020/2020_IA3_LVS_slides.pdf).