https://github.com/lacerbi/padova2022-bayes
Tutorial on Bayesian model fitting with PyVBMC.
https://github.com/lacerbi/padova2022-bayes
Last synced: 4 months ago
JSON representation
Tutorial on Bayesian model fitting with PyVBMC.
- Host: GitHub
- URL: https://github.com/lacerbi/padova2022-bayes
- Owner: lacerbi
- License: mit
- Created: 2022-12-16T22:38:48.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2022-12-17T09:28:33.000Z (almost 3 years ago)
- Last Synced: 2025-03-30T20:48:16.654Z (7 months ago)
- Language: Jupyter Notebook
- Size: 13 MB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Practical and efficient Bayesian model fitting with Variational Bayesian Monte Carlo (PyVBMC)
Tutorial on Bayesian model fitting using the PyVBMC package, presented at the *Data Science in Action* event at the University of Padova (December 2022).
**Lecturer:** [Luigi Acerbi](https://www.helsinki.fi/en/researchgroups/machine-and-human-intelligence), [@AcerbiLuigi](https://twitter.com/AcerbiLuigi) (University of Helsinki).
- To run the tutorial, download / clone the repository locally.
- Ensure that the [PyVBMC package](https://github.com/acerbilab/pyvbmc) is installed.
- **Notebook:** [acerbi_bayes_tutorial.ipynb](acerbi_bayes_tutorial.ipynb)
- **Slides:** [acerbi-bayes-padova-dec2022.pdf](acerbi-bayes-padova-dec2022.pdf)
### License
Unless stated otherwise, the material in this repo is released under the [MIT License](LICENSE).