An open API service indexing awesome lists of open source software.

https://github.com/laguer/hubble-radius

48 Methods exhibiting the Hubble radius (distance estimates) mistakenly known as the age of the universe
https://github.com/laguer/hubble-radius

age astrophysics bondi calculation calculus constant cosmology eddington gravitational jupyter kotov nambu notebook planck radius sanchez schwarzschild steady-state theory universe

Last synced: 3 months ago
JSON representation

48 Methods exhibiting the Hubble radius (distance estimates) mistakenly known as the age of the universe

Awesome Lists containing this project

README

          

# Hubble radius distance estimates

[![Cite ptep](https://img.shields.io/badge/PP-57-12-yellow.svg?style=flat)](http://www.ptep-online.com/2019/PP-57-12.PDF)
[![Latest PDF](https://img.shields.io/badge/PDF-latest-red.svg?style=flat)](http://www.ptep-online.com/2019/PP-57-12.PDF)
[![Cite rXiv](https://img.shields.io/badge/rXiv-1904.0218-orange.svg?style=flat)](http://rxiv.org/abs/1904.0218)
[![Cite viXra](https://img.shields.io/badge/viXra-1811.0146-green.svg?style=flat)](http://vixra.org/pdf/1811.0146v8.pdf)
[![Build Status](https://travis-ci.org/LaGuer/hubble-radius.svg?branch=master)](https://travis-ci.org/LaGuer/hubble-radius)
[![codecov](https://codecov.io/gh/LaGuer/hubble-radius/branch/master/graph/badge.svg)](https://codecov.io/gh/LaGuer/hubble-radius)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/LaGuer/hubble-radius/master)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/laguer/universe-age/blob/master/universe-age.ipynb)
[![nbviewer](https://img.shields.io/badge/view%20on-nbviewer-brightgreen.svg)](https://nbviewer.jupyter.org/github/LaGuer/hubble-radius/blob/master/hubble-radius.ipynb)
[![Binder](https://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/LaGuer/hubble-radius/master?urlpath=lab%2Ftree%2Fhubble-radius-new.ipynb)

This repository contains python code and Jupyter notebooks presenting 48 Methods exhibiting the age of the universe (Hubble radius distance) using 3 physical constants excluding the speed of light.

Source Context:

The formula **$R_H= ℏ^2/G m_e m_n m_p$** is derived via dimensional analysis, inspired by approaches in natural units and large-number hypotheses.

Dimensional Relationships
The quantity for length (𝐿) can be derived from the Planck constants. Using dimensional analysis:
$𝐿 ∝ ℏ𝐺 / 𝑀$
Where:
ℏ has dimensions of $ML^2T^{-1}$,
𝐺 has dimensions of $L^3M^{-1}T^{-2}$,
𝑀 represents mass.

To incorporate the masses of fundamental particles, we treat
𝑀 as the combination of
$π‘š_𝑝$, $π‘š_𝑛$, and $π‘š_𝑒$ in relevant proportions (to represent universal characteristics).

These 48 formulas illustrate how one can β€œcompute” a cosmic length scale using only ℏ, 𝐺, and the masses $π‘š_𝑒$, $π‘š_𝑛$, and $π‘š_𝑝$
– all without an explicit appearance of the speed of light. They serve as a playground for exploring how dimensional analysis and natural unit ideas may (or may not) reflect deep physics.

Physical Interpretation: In a standard cosmological setting the Hubble radius is defined by
$𝑅_𝐻 = 𝑐/𝐻_0$
(which explicitly uses the speed of light). Recasting it in terms of other fundamental constantsβ€”and in particular not introducing
𝑐
β€”is an approach that appears in attempts (such as those by Francis Michel Sanchez) to β€œderive” cosmic scales from quantum–gravitational considerations. The fact that one can match the observational scale (within a few percent, under a suitable choice of
π‘˜
) is a point of considerable debate and interest.

```
import scipy.constants as const
import numpy as np

# Constants (CODATA 2018/2022 values for consistency)
hbar = const.hbar # Reduced Planck constant (JΒ·s)
G = const.G # Gravitational constant (m^3Β·kg^βˆ’1Β·s^βˆ’2)
m_e = const.electron_mass # Electron mass (kg)
m_p = const.proton_mass # Proton mass (kg)
m_n = const.neutron_mass # Neutron mass (kg)
alpha = const.alpha # Fine-structure constant (dimensionless)

# Conversion constants
meters_per_lightyear = 9.461e15 # Approximate meters in one light-year
meters_to_gly = 1 / (meters_per_lightyear * 1e9) # Convert meters to gigalight-years

# JWST measured value (placeholder, in meters)
jwst_measured_value = 1.308e+26 # Approximate JWST value (corresponding to 13.81 Gly)

# Ratio of Compton wavelength to Planck length
lambda_e = hbar / (m_e * const.c) # Electron Compton wavelength (m)
L_planck = np.sqrt(hbar * G / const.c**3) # Planck length (m)
P = lambda_e / L_planck

# Precision formula
def precision_formula(P, alpha, lambdabare):
"""
Precision theory formula for calculation.
P: Ratio of Compton wavelength to Planck length
alpha: Fine-structure constant
lambdabare: Bare constant input
"""
term1 = np.e**(4 * np.e - 1 / alpha)
term2 = np.log(P**4 / alpha**3)**2
exponent = np.sqrt((term1 - term2) / 2)
return np.exp(exponent) * lambdabare

# Corrected formula: R = 2 * hbar^2 / (G * m_e * m_n * m_p)
def corrected_formula(hbar, G, m_e, m_p, m_n):
"""
Calculates the Hubble radius using the corrected formula.
"""
return 2 * hbar**2 / (G * m_e * m_n * m_p)

# Adjusted lambdabare value for scaling
lambdabare = 1e-5 # Example value in meters

# Calculate corrected formula result
corrected_result = corrected_formula(hbar, G, m_e, m_p, m_n)
corrected_result_gly = corrected_result * meters_to_gly # Convert to gigalight-years

# Calculate precision formula result
precision_result = precision_formula(P, alpha, lambdabare)
precision_result_gly = precision_result * meters_to_gly # Convert to gigalight-years

# Calculate precision difference (JWST deviation)
precision_difference = abs(corrected_result_gly - 13.81) / 13.81

# Output results
print("Hubble Radius Calculation:")
print(f"Corrected Formula:")
print(f"R (meters) = {corrected_result:.3e} m")
print(f"R (gigalight-years) = {corrected_result_gly:.3f} Gly")

print("\nPrecision Formula Calculation:")
print(f"R (meters) = {precision_result:.3e} m")
print(f"R (gigalight-years) = {precision_result_gly:.3f} Gly")

print("\nJWST Measured Value:")
print(f"JWST Value (meters) = {jwst_measured_value:.3e} m")
print(f"JWST Value (gigalight-years) = {jwst_measured_value * meters_to_gly:.3f} Gly")

print(f"\nPrecision Difference (Relative Error): {precision_difference:.5%}")

```

In addition we used Python modules such as: scipy, sympy, pandas and numpy

Fixed Constants used are:

* πœ‹=3.141592653589793... https://oeis.org/A000796
* Euler Mascheroni 𝛾=0.5772156649015329... https://oeis.org/A001620
* Atiyah's Ξ“=25.178097241906...
* Feigenbaum constant Ξ΄=4.669201609102990671853... https://oeis.org/A006890
* 2nd Feigenbaum constant Ξ±=2.50290787509589282228390287321... https://oeis.org/A006891
* Eddington Electric Constant π‘Ž=137.0359990836958 also known as the inversed fine structure constant CODATA2018
* 𝑐=299792458.0 m/s CODATA2018
* β„Ž=6.62607015.10βˆ’34 𝐽.π»π‘§βˆ’1 CODATA2018
* ℏ=1.0545718176461565.10βˆ’34 𝐽.𝑠 CODATA2018
* 𝑙𝑃=1.616255.10βˆ’35 m Planck length
* π‘šπ‘ƒ=2.176434.10βˆ’8 kg Planck mass
* ƛ𝑒 =3.8615926796.10βˆ’13 m Reduced (Electron) Compton Wavelength CODATA2018
* ƛ𝑝 =2.10308910336.10βˆ’16 m Reduced (Proton) Compton Wavelength CODATA2018
* Mass of the electron π‘šπ‘’=9.1093837015.10βˆ’31 kg CODATA2018
* Mass of the proton π‘šπ‘=1.67262192369.10βˆ’27 kg CODATA2018
* Boson π‘Š=80.379𝐺𝑒𝑉 Β± 0.012 Particle Data Group Bosons M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019
* Boson 𝑍=91.1876𝐺𝑒𝑉 Β± 0.0023 Particle Data Group Bosons M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019
* Lepton 𝑒=0.5109989461𝑀𝑒𝑉 Particle Data Group Leptons M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019
* Baryon 𝑝=938.272081𝑀𝑒𝑉 Particle Data Group Baryons M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019
* Baryon 𝑛=939.565413𝑀𝑒𝑉 Particle Data Group Baryons M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019
* 𝐺=6.6743.10βˆ’11 π‘š3.π‘˜π‘”βˆ’1.π‘ βˆ’2 Newtonian constant of gravitation CODATA2018
* πΊπ‘ž=6.6755.10βˆ’11 π‘š3.π‘˜π‘”βˆ’1.π‘ βˆ’2 Newtonian constant of gravitation measured by T.Quinn et al. (2013) BIPM Sevres Improved determination of G using two methods
* 𝐺𝑏2𝑐=6.6754552.10βˆ’11 π‘š3.π‘˜π‘”βˆ’1.π‘ βˆ’2 Newtonian constant of gravitation estimated by Francis M. Sanchez et al. (2019) in Back to Cosmos
* 𝐺𝑠=6.67545372.10βˆ’11 π‘š3.π‘˜π‘”βˆ’1.π‘ βˆ’2 Newtonian constant of gravitation estimate by Francis M. Sanchez (Jan 2020)