Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/laknath1996/gen-models
Course project for EN.553.741 Machine Learning II at JHU. Implements Wasserstein GAN, variational autoencoder and denoising diffusion probabilistic models.
https://github.com/laknath1996/gen-models
diffusion-models generative-adversarial-network generative-model
Last synced: about 1 month ago
JSON representation
Course project for EN.553.741 Machine Learning II at JHU. Implements Wasserstein GAN, variational autoencoder and denoising diffusion probabilistic models.
- Host: GitHub
- URL: https://github.com/laknath1996/gen-models
- Owner: Laknath1996
- Created: 2024-03-25T03:31:27.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2024-05-14T03:02:26.000Z (9 months ago)
- Last Synced: 2024-05-15T12:20:13.786Z (9 months ago)
- Topics: diffusion-models, generative-adversarial-network, generative-model
- Language: Jupyter Notebook
- Homepage:
- Size: 8.28 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Description
Course project for EN.553.741 Machine Learning II at JHU. This repo contains code for implementing Wasserstein GAN, variational autoencoder and denoising diffusion probabilistic models from scratch.
## Training metrics
* VAE (Gaussian encoder + Bernoulli decoder) [1] trained on MNIST: [[logs]](https://wandb.ai/ashwin1996/vae/runs/ye2lf3sr?nw=nwuserashwin1996)
* WGAN (with weight clipping) [2] trained on MNIST: [[logs]](https://wandb.ai/ashwin1996/wgan/runs/kfa382kb?nw=nwuserashwin1996)
* DDPM [3] trained on MNIST: [[logs]](https://wandb.ai/ashwin1996/ddpm/runs/c362xa13?nw=nwuserashwin1996)## Report & Slides
* [[Report]](https://github.com/Laknath1996/gen-models/blob/main/assets/report.pdf)
## References
[1] Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013).
[2] Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein generative adversarial networks." International conference on machine learning. PMLR, 2017.
[3] Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in neural information processing systems 33 (2020): 6840-6851.