An open API service indexing awesome lists of open source software.

https://github.com/lan496/hsnf

Computing Hermite normal form and Smith normal form with transformation matrices
https://github.com/lan496/hsnf

matrix-functions numpy python

Last synced: 23 days ago
JSON representation

Computing Hermite normal form and Smith normal form with transformation matrices

Awesome Lists containing this project

README

          

# hsnf
[![testing](https://github.com/lan496/hsnf/actions/workflows/testing.yml/badge.svg?branch=master)](https://github.com/lan496/hsnf/actions/workflows/testing.yml)
[![Documentation Status](https://readthedocs.org/projects/hsnf/badge/?version=latest)](https://hsnf.readthedocs.io/en/latest/?badge=latest)
[![pre-commit.ci status](https://results.pre-commit.ci/badge/github/lan496/hsnf/master.svg)](https://results.pre-commit.ci/latest/github/lan496/hsnf/master)
[![codecov](https://codecov.io/gh/lan496/hsnf/branch/master/graph/badge.svg?token=G0Z06OQR17)](https://codecov.io/gh/lan496/hsnf)
[![MIT License](http://img.shields.io/badge/license-MIT-blue.svg?style=flat)](https://github.com/lan496/hsnf/blob/master/LICENSE)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/hsnf)
[![PyPI version](https://badge.fury.io/py/hsnf.svg)](https://badge.fury.io/py/hsnf)
![PyPI - Downloads](https://img.shields.io/pypi/dm/hsnf)

Computing Hermite normal form and Smith normal form with transformation matrices.

- Document:
- Document(develop):
- Github:
- PyPI:

## Usage

```python
import numpy as np
from hsnf import column_style_hermite_normal_form, row_style_hermite_normal_form, smith_normal_form

# Integer matrix to be decomposed
M = np.array(
[
[-6, 111, -36, 6],
[5, -672, 210, 74],
[0, -255, 81, 24],
]
)

# Smith normal form
D, L, R = smith_normal_form(M)
"""
D = array([
[ 1 0 0 0]
[ 0 3 0 0]
[ 0 0 2079 0]])
"""
assert np.allclose(L @ M @ R, D)
assert np.around(np.abs(np.linalg.det(L))) == 1 # unimodular
assert np.around(np.abs(np.linalg.det(R))) == 1 # unimodular

# Row-style hermite normal form
H, L = row_style_hermite_normal_form(M)
"""
H = array([
[ 1 0 420 -2522]
[ 0 3 1809 -10860]
[ 0 0 2079 -12474]])
"""
assert np.allclose(L @ M, H)
assert np.around(np.abs(np.linalg.det(L))) == 1 # unimodular

# Column-style hermite normal form
H, R = column_style_hermite_normal_form(M)
"""
H = array([
[ 3 0 0 0]
[ 0 1 0 0]
[1185 474 2079 0]])
"""
assert np.allclose(np.dot(M, R), H)
assert np.around(np.abs(np.linalg.det(R))) == 1 # unimodular
```

## Installation

hsnf works with Python3.8+ and can be installed via PyPI:

```shell
pip install hsnf
```

or in local:
```shell
git clone git@github.com:lan496/hsnf.git
cd hsnf
pip install -e .[dev,docs]
```

## References
- http://www.dlfer.xyz/post/2016-10-27-smith-normal-form/
- I appreciate Dr. D. L. Ferrario's instructive blog post and his approval for referring his scripts.
- [CSE206A: Lattices Algorithms and Applications (Spring 2014)](https://cseweb.ucsd.edu/classes/sp14/cse206A-a/index.html)
- Henri Cohen, A Course in Computational Algebraic Number Theory (Springer-Verlag, Berlin, 1993).