Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/langchain-ai/langchain
🦜🔗 Build context-aware reasoning applications
https://github.com/langchain-ai/langchain
Last synced: 5 days ago
JSON representation
🦜🔗 Build context-aware reasoning applications
- Host: GitHub
- URL: https://github.com/langchain-ai/langchain
- Owner: langchain-ai
- License: mit
- Created: 2022-10-17T02:58:36.000Z (about 2 years ago)
- Default Branch: master
- Last Pushed: 2024-10-29T16:57:47.000Z (2 months ago)
- Last Synced: 2024-10-29T17:14:42.906Z (2 months ago)
- Language: Jupyter Notebook
- Homepage: https://python.langchain.com
- Size: 339 MB
- Stars: 94,094
- Watchers: 688
- Forks: 15,197
- Open Issues: 787
-
Metadata Files:
- Readme: README.md
- Contributing: .github/CONTRIBUTING.md
- License: LICENSE
- Code of conduct: .github/CODE_OF_CONDUCT.md
- Citation: CITATION.cff
- Security: SECURITY.md
Awesome Lists containing this project
- awesome_open_llms - langchain
- awesome - langchain-ai/langchain - 🦜🔗 Build context-aware reasoning applications (Jupyter Notebook)
- awesome - langchain-ai/langchain - 🦜🔗 Build context-aware reasoning applications (Jupyter Notebook)
- awesome-ai-sdks - GitHub
- my-awesome - langchain-ai/langchain - 01 star:97.4k fork:15.8k 🦜🔗 Build context-aware reasoning applications (Jupyter Notebook)
- awesome-systematic-trading - LangChain - ai/langchain?style=social) - Building applications with LLMs through composability (Basic Components / Fundamental libraries)
- my-awesome-starred - langchain-ai/langchain - 🦜🔗 Build context-aware reasoning applications (Jupyter Notebook)
- awesome-ml-python-packages - LangChain
- Awesome-Tool-Learning - LangChain - ai/langchain) (📱 Applications / 🧪 Evalution)
- Awesome-AITools - Github - ai/langchain?style=social)|免费| (精选文章 / GPT-LLMs应用)
- awesome-repositories - langchain-ai/langchain - 🦜🔗 Build context-aware reasoning applications (Jupyter Notebook)
- awesome-github-star - langchain - ai | 63463 | (Python)
- ai-game-devtools - LangChain
- stars - langchain-ai/langchain - 🦜🔗 Build context-aware reasoning applications (Python)
- awesome-LLM-resourses - LangChain - aware reasoning applications. (推理 Inference)
- awesome-llm-json - LangChain
- awesome-deliberative-prompting - [>code - ai/langchain) (Tools and Frameworks / Reflection and Meta-Cognition)
- awesome-production-machine-learning - LangChain - ai/langchain.svg?style=social) - LangChain assists in building applications with LLMs through composability. (Industry Strength NLP)
- awesome-agents - langchain - aware reasoning applications | framework | 94,476 | 15,279 | 760 | 480 | 0 days, 12 hrs, 15 mins | 680 | MIT License | (Table of Open-Source AI Agents Projects)
- awesome-agents - langchain - aware reasoning applications | framework | 94,476 | 15,279 | 760 | 480 | 0 days, 12 hrs, 15 mins | 680 | MIT License | (Table of Open-Source AI Agents Projects)
- jimsghstars - langchain-ai/langchain - 🦜🔗 Build context-aware reasoning applications (Jupyter Notebook)
- awesome-ccamel - langchain-ai/langchain - 🦜🔗 Build context-aware reasoning applications (Jupyter Notebook)
- awesome-langchain-zh - LangChain - ai/langchain?style=social): 原始的🐍 (LangChain框架)
- awesome-genai - Langchain - Build context-aware reasoning applications. [![Forks](https://img.shields.io/github/forks/langchain-ai/langchain?style=social)](https://github.com/langchain-ai/langchain/network/members) [![Stars](https://img.shields.io/github/stars/langchain-ai/langchain?style=social)](https://github.com/langchain-ai/langchain/stargazers) (Tools & Frameworks / Development Frameworks)
- awesome-genai - Langchain - Build context-aware reasoning applications. [![Forks](https://img.shields.io/github/forks/langchain-ai/langchain?style=social)](https://github.com/langchain-ai/langchain/network/members) [![Stars](https://img.shields.io/github/stars/langchain-ai/langchain?style=social)](https://github.com/langchain-ai/langchain/stargazers) (Tools & Frameworks / Development Frameworks)
- awesome-llm-and-aigc - LangChain
- awesome-llm-and-aigc - LangChain
- awesome-generative-ai-data-scientist - LangChain
- awesome-generative-ai-meets-julia-language - LangChain - The best option for building applications on top of LLMs (eg, Chains, Agents). It has a lot of adapters for common models, databases, and other services. (Must-Know Python Projects / Generative AI - Previous Generation)
- awesome - langchain-ai/langchain - 🦜🔗 Build context-aware reasoning applications (Jupyter Notebook)
- awesome - langchain-ai/langchain - 🦜🔗 Build context-aware reasoning applications (Jupyter Notebook)
- awesome-ai-papers - [LangChain - rag/)\]\[[LangChain Hub](https://smith.langchain.com/hub)\]\[[langgraph](https://github.com/langchain-ai/langgraph)\] (NLP / 3. Pretraining)
- awesome-ai-papers - [LangChain - rag/)\]\[[LangChain Hub](https://smith.langchain.com/hub)\]\[[langgraph](https://github.com/langchain-ai/langgraph)\] (NLP / 3. Pretraining)
- alan_awesome_llm - LangChain - aware reasoning applications. (推理 Inference)
- alan_awesome_llm - LangChain - aware reasoning applications. (推理 Inference)
- awesome-engineering - Langchain
- awesome-engineering - Langchain
- awesome-data-engineer - LangChain
- awesome-data-engineer - LangChain
- awesome_ai_agents - LangChain Agents - Build context-aware reasoning applications. (Building / Frameworks)
- awesome_ai_agents - LangChain - LangChain is a framework enabling context-aware reasoning applications with integrated libraries, templates, and developer tools [github](https://github.com/langchain-ai/langchain) (Learning / Repositories)
- redis-ai-resources - LangChain Python
- redis-ai-resources - LangChain Python
- AiTreasureBox - langchain-ai/langchain - 01-07_97776_70](https://img.shields.io/github/stars/langchain-ai/langchain.svg)|⚡ Building applications with LLMs through composability ⚡| (Repos)
- Awesome-LLMOps - LangChain - ai/langchain.svg) | ![Release](https://img.shields.io/github/release/langchain-ai/langchain) | ![Contributors](https://img.shields.io/github/contributors/langchain-ai/langchain) | ⚡ Building applications with LLMs through composability ⚡ | | (LLMOps)
- Awesome-LLMOps - LangChain - ai/langchain.svg) | ![Release](https://img.shields.io/github/release/langchain-ai/langchain) | ![Contributors](https://img.shields.io/github/contributors/langchain-ai/langchain) | ⚡ Building applications with LLMs through composability ⚡ | | (LLMOps)
- Awesome-LLM4Security - langchain - 6B的微调模型对该事件进行分类。然后,根据分类后的结果,使用对应的prompt模板对ChatGLM-pro大模型进行请求,大模型根据向量库中的知识以及自身的逻辑推理能力,生成该类事件的分析研判流程。接着,Agent 根据事件的分析研判流程通过调用工具、访问大模型、请求网络等方式来对该事件进行研判。最后,根据分析的结果输出研判结论以及形成对应的研判报告。 | [AutoMSS](https://github.com/1700111005/autoMSS) | (资源列表 / 项目)
- Awesome-LLM4Security - langchain - 6B的微调模型对该事件进行分类。然后,根据分类后的结果,使用对应的prompt模板对ChatGLM-pro大模型进行请求,大模型根据向量库中的知识以及自身的逻辑推理能力,生成该类事件的分析研判流程。接着,Agent 根据事件的分析研判流程通过调用工具、访问大模型、请求网络等方式来对该事件进行研判。最后,根据分析的结果输出研判结论以及形成对应的研判报告。 | [AutoMSS](https://github.com/1700111005/autoMSS) | (资源列表 / 项目)