Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/langchain-ai/langchain-benchmarks

🦜💯 Flex those feathers!
https://github.com/langchain-ai/langchain-benchmarks

benchmark-framework benchmarking langchain langchain-python llm llms

Last synced: 1 day ago
JSON representation

🦜💯 Flex those feathers!

Awesome Lists containing this project

README

        

# 🦜💯 LangChain Benchmarks

[![Release Notes](https://img.shields.io/github/release/langchain-ai/langchain-benchmarks)](https://github.com/langchain-ai/langchain-benchmarks/releases)
[![CI](https://github.com/langchain-ai/langchain-benchmarks/actions/workflows/ci.yml/badge.svg)](https://github.com/langchain-ai/langchain-benchmarks/actions/workflows/ci.yml)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai)
[![](https://dcbadge.vercel.app/api/server/6adMQxSpJS?compact=true&style=flat)](https://discord.gg/6adMQxSpJS)
[![Open Issues](https://img.shields.io/github/issues-raw/langchain-ai/langchain-benchmarks)](https://github.com/langchain-ai/langchain-benchmarks/issues)

[📖 Documentation](https://langchain-ai.github.io/langchain-benchmarks/index.html)

A package to help benchmark various LLM related tasks.

The benchmarks are organized by end-to-end use cases, and
utilize [LangSmith](https://smith.langchain.com/) heavily.

We have several goals in open sourcing this:

- Showing how we collect our benchmark datasets for each task
- Showing what the benchmark datasets we use for each task is
- Showing how we evaluate each task
- Encouraging others to benchmark their solutions on these tasks (we are always looking for better ways of doing things!)

## Benchmarking Results

Read some of the articles about benchmarking results on our blog.

* [Agent Tool Use](https://blog.langchain.dev/benchmarking-agent-tool-use/)
* [Query Analysis in High Cardinality Situations](https://blog.langchain.dev/high-cardinality/)
* [RAG on Tables](https://blog.langchain.dev/benchmarking-rag-on-tables/)
* [Q&A over CSV data](https://blog.langchain.dev/benchmarking-question-answering-over-csv-data/)

### Tool Usage (2024-04-18)

See [tool usage docs](https://langchain-ai.github.io/langchain-benchmarks/notebooks/tool_usage/benchmark_all_tasks.html) to recreate!

![download](https://github.com/langchain-ai/langchain-benchmarks/assets/3205522/0da33de8-e03f-49cf-bd48-e9ff945828a9)

Explore Agent Traces on LangSmith:

* [Relational Data](https://smith.langchain.com/public/22721064-dcf6-4e42-be65-e7c46e6835e7/d)
* [Tool Usage (1-tool)](https://smith.langchain.com/public/ac23cb40-e392-471f-b129-a893a77b6f62/d)
* [Tool Usage (26-tools)](https://smith.langchain.com/public/366bddca-62b3-4b6e-849b-a478abab73db/d)
* [Multiverse Math](https://smith.langchain.com/public/983faff2-54b9-4875-9bf2-c16913e7d489/d)

## Installation

To install the packages, run the following command:

```bash
pip install -U langchain-benchmarks
```

All the benchmarks come with an associated benchmark dataset stored in [LangSmith](https://smith.langchain.com). To take advantage of the eval and debugging experience, [sign up](https://smith.langchain.com), and set your API key in your environment:

```bash
export LANGCHAIN_API_KEY=ls-...
```

## Repo Structure

The package is located within [langchain_benchmarks](./langchain_benchmarks/). Check out the [docs](https://langchain-ai.github.io/langchain-benchmarks/index.html) for information on how to get starte.

The other directories are legacy and may be moved in the future.

## Archived

Below are archived benchmarks that require cloning this repo to run.

- [CSV Question Answering](https://github.com/langchain-ai/langchain-benchmarks/tree/main/archived/csv-qa)
- [Extraction](https://github.com/langchain-ai/langchain-benchmarks/tree/main/archived/extraction)
- [Q&A over the LangChain docs](https://github.com/langchain-ai/langchain-benchmarks/tree/main/archived/langchain-docs-benchmarking)
- [Meta-evaluation of 'correctness' evaluators](https://github.com/langchain-ai/langchain-benchmarks/tree/main/archived/meta-evals)

## Related

- For cookbooks on other ways to test, debug, monitor, and improve your LLM applications, check out the [LangSmith docs](https://docs.smith.langchain.com/)
- For information on building with LangChain, check out the [python documentation](https://python.langchain.com/docs/get_started/introduction) or [JS documentation](https://js.langchain.com/docs/get_started/introduction)