Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/lanl-ansi/katana.jl
A Cutting-Plane Based Solver for Convex NLPs
https://github.com/lanl-ansi/katana.jl
convex-optimization julia-language linear-programming nonlinear-optimization optimization
Last synced: about 1 month ago
JSON representation
A Cutting-Plane Based Solver for Convex NLPs
- Host: GitHub
- URL: https://github.com/lanl-ansi/katana.jl
- Owner: lanl-ansi
- License: other
- Created: 2017-06-22T03:56:41.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2018-08-17T22:42:50.000Z (over 6 years ago)
- Last Synced: 2024-06-11T16:01:13.122Z (6 months ago)
- Topics: convex-optimization, julia-language, linear-programming, nonlinear-optimization, optimization
- Language: Julia
- Homepage: https://lanl-ansi.github.io/Katana.jl/latest/
- Size: 110 KB
- Stars: 9
- Watchers: 10
- Forks: 2
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Katana.jl
Dev: [![Build Status](https://travis-ci.org/lanl-ansi/Katana.jl.svg?branch=master)](https://travis-ci.org/lanl-ansi/Katana.jl) [![codecov](https://codecov.io/gh/lanl-ansi/Katana.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/lanl-ansi/Katana.jl) [![](https://img.shields.io/badge/docs-latest-blue.svg)](https://lanl-ansi.github.io/Katana.jl/latest)
Katana.jl is a MathProgBase solver for Convex NonLinearPrograms (NLPs). Katana.jl solves NLPs via the [Extended Cutting-Plane (ECP)](http://epubs.siam.org/doi/10.1137/0108053) method, which combines an Linear Programming solver with a cutting-plane generator to solve Convex NLPs. Katana.jl is well suited for large-scale Convex NLPs where most of the constraints are linear and the nonlinear constraints are sparse.
## Installation
Install via `Pkg.clone("[email protected]:lanl-ansi/Katana.jl.git")`Test via `Pkg.test("Katana")`
Build docs by running `julia make.jl` in the docs directory
## License
This code is provided under a BSD license as part of the Polyhedral Approximation in Julia: Automatic Reformulations for InTeger Optimization (PAJARITO) project, LA-CC-15-088.