https://github.com/lapin0t/induction-recursion
formalization of ornaments on indexed inductive-recursive definitions
https://github.com/lapin0t/induction-recursion
Last synced: 7 months ago
JSON representation
formalization of ornaments on indexed inductive-recursive definitions
- Host: GitHub
- URL: https://github.com/lapin0t/induction-recursion
- Owner: Lapin0t
- Created: 2018-05-09T22:44:06.000Z (over 7 years ago)
- Default Branch: new-cleaner
- Last Pushed: 2019-03-10T20:48:45.000Z (over 6 years ago)
- Last Synced: 2025-01-14T18:05:10.550Z (9 months ago)
- Size: 1.14 MB
- Stars: 8
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.rst
Awesome Lists containing this project
README
Ornamenting Inductive-Recursive Definitions
===========================================This repository holds the Agda development of my internship in the MSP_ group
with Conor McBride. `Report `_References:
* Neil Ghani, Conor McBride, Fredrik Nordvall Forsberg, and Stephan Spahn.
Variation on Inductive-Recursive Definitions. *MFCS '17*, 63:1–13, 2017.
* Peter Dybjer, and Anton Setzer. Indexed induction-recursion. *Journal of
Logic and Algebraic Programming*, 66(1):1–49, 2006.
* Conor McBride. Ornamental Algebras, Algebraic Ornaments. *Preprint*, 2011.
* Robert Atkey, Patricia Johann, and Neil Ghani. When is a Type Refinement an
Inductive Type? *FOSSACS '11*, 6604:72–87, 2011.
* Pierre-Évariste Dagand, and Conor McBride. Transporting functions across
Ornaments. *Journal of Functional Programming*, 24(2–3):316–383.
* Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and Peter
Morris. Indexed Containers. *Journal of Functional Programming*, 25:e5,
2015.
* Edwin Brady, Conor McBride, and James McKinna. Inductive Families Need Not
Store Their Indices. *TYPES '03*, 3085:115–129, 2003.
* Peter Hancock, Conor McBride, Neil Ghani, Lorenzo Malatesta, and Thorsten
Altenkirch. Small Induction-Recursion. *TCLA '13*, 156–172, 2013.
* Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James
McKinna. A Type and Scope Safe Universe of Syntaxes with Bindings, Their
Semantics and Proofs. *ICFP '18*, 2018... _MSP: http://msp.cis.strath.ac.uk/