An open API service indexing awesome lists of open source software.

https://github.com/lapin0t/induction-recursion

formalization of ornaments on indexed inductive-recursive definitions
https://github.com/lapin0t/induction-recursion

Last synced: 7 months ago
JSON representation

formalization of ornaments on indexed inductive-recursive definitions

Awesome Lists containing this project

README

          

Ornamenting Inductive-Recursive Definitions
===========================================

This repository holds the Agda development of my internship in the MSP_ group
with Conor McBride. `Report `_

References:

* Neil Ghani, Conor McBride, Fredrik Nordvall Forsberg, and Stephan Spahn.
Variation on Inductive-Recursive Definitions. *MFCS '17*, 63:1–13, 2017.
* Peter Dybjer, and Anton Setzer. Indexed induction-recursion. *Journal of
Logic and Algebraic Programming*, 66(1):1–49, 2006.
* Conor McBride. Ornamental Algebras, Algebraic Ornaments. *Preprint*, 2011.
* Robert Atkey, Patricia Johann, and Neil Ghani. When is a Type Refinement an
Inductive Type? *FOSSACS '11*, 6604:72–87, 2011.
* Pierre-Évariste Dagand, and Conor McBride. Transporting functions across
Ornaments. *Journal of Functional Programming*, 24(2–3):316–383.
* Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and Peter
Morris. Indexed Containers. *Journal of Functional Programming*, 25:e5,
2015.
* Edwin Brady, Conor McBride, and James McKinna. Inductive Families Need Not
Store Their Indices. *TYPES '03*, 3085:115–129, 2003.
* Peter Hancock, Conor McBride, Neil Ghani, Lorenzo Malatesta, and Thorsten
Altenkirch. Small Induction-Recursion. *TCLA '13*, 156–172, 2013.
* Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James
McKinna. A Type and Scope Safe Universe of Syntaxes with Bindings, Their
Semantics and Proofs. *ICFP '18*, 2018.

.. _MSP: http://msp.cis.strath.ac.uk/