Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/laruss/pydantic-mongo

PydanticMongo is an ODM (Object-Document Mapper) for MongoDB, built upon the foundation of Pydantic and Flask-PyMongo. This allows you to leverage Pydantic's data validation and serialization capabilities, and seamlessly integrate it with MongoDB through Flask-PyMongo.
https://github.com/laruss/pydantic-mongo

flask mongodb orm pydantic pymongo python

Last synced: about 2 months ago
JSON representation

PydanticMongo is an ODM (Object-Document Mapper) for MongoDB, built upon the foundation of Pydantic and Flask-PyMongo. This allows you to leverage Pydantic's data validation and serialization capabilities, and seamlessly integrate it with MongoDB through Flask-PyMongo.

Awesome Lists containing this project

README

        

# PydanticMongo

PydanticMongo is an ODM (Object-Document Mapper) for MongoDB, built upon the foundation of Pydantic and Flask-PyMongo. This allows you to leverage Pydantic's data validation and serialization capabilities, and seamlessly integrate it with MongoDB through Flask-PyMongo.

## Version

0.1.4.3

Changes:

- updated requirements versions
- added support for mongo indexes
- added support for a Literal type
- some other minor fixes

## Project Structure
```
root
|-- pydantic_mongo
| |-- __init__.py
| |-- base.py
| |-- base_pm_model.py
| |-- db_ref_model.py
| |-- extensions.py
| |-- helpers.py
| |-- meta.py
| |-- mongo_model.py
| |-- pm_model.py
|-- tests
| |-- integration
| |-- unit
|-- readme.md
|-- requirements.txt
|-- setup.py
```

## Installation

To install `PydanticMongo`, you can clone the repository from GitHub or install it using pip:

```bash
pip install git+https://github.com/laruss/pydantic-mongo
```

*Note*: Ensure you are using Python 3.10 or newer.

## Usage

1. Initialization:

```python
from pydantic_mongo import PydanticMongo

pm = PydanticMongo()
pm.init_app(app)
```

2. Model creation:

```python
from pydantic_mongo import PydanticMongoModel as PmModel

class YourModel(PmModel):
...
```

2.1. Model creation with DBRefs as dicts with "collection", "database" and "id" keys:

```python
class YourModel(PmModel):
nested_model: AnotherModel = AnotherModel()

data = {"nested_model": {"collection": "another_models", "database": "", "id": "id"}}
instance = YourModel.get_with_parse_db_refs(data)
```

2.2. Model creation with forward references:

```python
from __future__ import annotations
from typing import ForwardRef

class YourModel(PmModel):
nested_model: ForwardRef("AnotherModel") = AnotherModel()
nested_model_list: List[ForwardRef("AnotherModel")] = [AnotherModel()]
nested_model_dict: Dict[str, ForwardRef("AnotherModel")] = {"key": AnotherModel()}

class AnotherModel(PmModel):
name: str

YourModel.model_rebuild()

another_model = AnotherModel(name="name").save()
data = {"nested_model": another_model, "nested_model_list": [another_model]}
instance = YourModel(**data).save()

```

2.3 Model creation with field indexing:

```python
from pydantic_mongo import PydanticMongoModel as PmModel
from pymongo import IndexModel

class YourModel(PmModel):
name: str
age: int

class _MongoConfig:
indexes = [
IndexModel([("name", 1)]),
IndexModel([("age", 1)], unique=True)
]

YourModel(name="name", age=1).save()
YourModel(name="name", age=2).save() # will raise PyMongoError
YourModel(name="name2", age=1).save() # will raise PyMongoError

```

3. Data operations:

- Retrieving by ID:

```python
instance = YourModel.get_by_id(your_id)
```

- Retrieving by filter:

```python
instance = YourModel.get_by_filter({"field": "value"})
```

- Saving data:

```python
instance.save()
```

- Deleting data:

```python
instance.delete()
```

- Retrieving objects by filter:

```python
objects = list(YourModel.objects({"field": "value"}))
```

## Key Features

- `get_by_id`: Retrieve an object by its ID.

- `get_by_filter`: Retrieve an object based on a specified filter.

- `save`: Save or update an object in the database.

- `delete`: Delete an object from the database.

- `objects`: Retrieve all objects that match a given filter.

- `model_dump`: Get a dictionary representation of the model.

- `model_json_schema`: Retrieve the JSON schema of the model.

- `db_ref`: Get a DBRef object for the model.

- `get_ref_objects`: Get the objects referenced to an object by a DBRef.

## Easy Document References

With PydanticMongo, creating references to other documents is straightforward.

Example:

```python
from pydantic_mongo import PydanticMongoModel as PmModel

class YourAwesomeChild(PmModel):
name: str

class YourAwesomeParent(PmModel):
name: str
children: List[YourAwesomeChild]

child = YourAwesomeChild(name="Victor")
child.save()

parent = YourAwesomeParent(name="Sam", children=[child])
parent.save()
print(parent) # _id="id", name="Sam", children=[_id="id", name="Victor"]
```

In the database, these are represented by using bson.ObjectId linking to the `your_awesome_childs` collection.

`Note:` When a Document is referred as a db_ref, it won't be loaded until it is accessed.
This is done to avoid circular references.

## Test Coverage

Made with [pytest-cov](https://pypi.org/project/pytest-cov/)

```bash
Name Stmts Miss Cover
-----------------------------------------------------
pydantic_mongo/__init__.py 2 0 100%
pydantic_mongo/base.py 63 2 97%
pydantic_mongo/base_pm_model.py 145 2 99%
pydantic_mongo/db_ref_model.py 11 0 100%
pydantic_mongo/extensions.py 28 1 96%
pydantic_mongo/helpers.py 45 0 100%
pydantic_mongo/meta.py 57 3 95%
pydantic_mongo/mongo_model.py 73 1 99%
pydantic_mongo/pm_model.py 42 0 100%
-----------------------------------------------------
TOTAL 466 9 98%
```

## Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
To run the tests, use `pytest`:

```bash
pytest ./tests/unit
pytest ./tests/integration
```

`Note:` Integration tests require a running MongoDB instance.

## Conclusion

PydanticMongo offers a powerful toolset for working with MongoDB in Flask applications, integrating seamlessly with Pydantic for data validation and serialization. Use it to simplify and structure your database-interaction code.

## TODO

- [ ] Check for all the available pydantic methods
- [ ] Check for all the available mongo types
- [ ] Add support of various DBRef types