Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/laruss/pydantic-mongo
PydanticMongo is an ODM (Object-Document Mapper) for MongoDB, built upon the foundation of Pydantic and Flask-PyMongo. This allows you to leverage Pydantic's data validation and serialization capabilities, and seamlessly integrate it with MongoDB through Flask-PyMongo.
https://github.com/laruss/pydantic-mongo
flask mongodb orm pydantic pymongo python
Last synced: about 2 months ago
JSON representation
PydanticMongo is an ODM (Object-Document Mapper) for MongoDB, built upon the foundation of Pydantic and Flask-PyMongo. This allows you to leverage Pydantic's data validation and serialization capabilities, and seamlessly integrate it with MongoDB through Flask-PyMongo.
- Host: GitHub
- URL: https://github.com/laruss/pydantic-mongo
- Owner: laruss
- Created: 2023-09-05T17:55:13.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-11-06T16:47:41.000Z (about 1 year ago)
- Last Synced: 2023-11-07T00:55:21.009Z (about 1 year ago)
- Topics: flask, mongodb, orm, pydantic, pymongo, python
- Language: Python
- Homepage:
- Size: 53.7 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: readme.md
Awesome Lists containing this project
README
# PydanticMongo
PydanticMongo is an ODM (Object-Document Mapper) for MongoDB, built upon the foundation of Pydantic and Flask-PyMongo. This allows you to leverage Pydantic's data validation and serialization capabilities, and seamlessly integrate it with MongoDB through Flask-PyMongo.
## Version
0.1.4.3
Changes:
- updated requirements versions
- added support for mongo indexes
- added support for a Literal type
- some other minor fixes## Project Structure
```
root
|-- pydantic_mongo
| |-- __init__.py
| |-- base.py
| |-- base_pm_model.py
| |-- db_ref_model.py
| |-- extensions.py
| |-- helpers.py
| |-- meta.py
| |-- mongo_model.py
| |-- pm_model.py
|-- tests
| |-- integration
| |-- unit
|-- readme.md
|-- requirements.txt
|-- setup.py
```## Installation
To install `PydanticMongo`, you can clone the repository from GitHub or install it using pip:
```bash
pip install git+https://github.com/laruss/pydantic-mongo
```*Note*: Ensure you are using Python 3.10 or newer.
## Usage
1. Initialization:
```python
from pydantic_mongo import PydanticMongopm = PydanticMongo()
pm.init_app(app)
```2. Model creation:
```python
from pydantic_mongo import PydanticMongoModel as PmModelclass YourModel(PmModel):
...
```2.1. Model creation with DBRefs as dicts with "collection", "database" and "id" keys:
```python
class YourModel(PmModel):
nested_model: AnotherModel = AnotherModel()data = {"nested_model": {"collection": "another_models", "database": "", "id": "id"}}
instance = YourModel.get_with_parse_db_refs(data)
```2.2. Model creation with forward references:
```python
from __future__ import annotations
from typing import ForwardRefclass YourModel(PmModel):
nested_model: ForwardRef("AnotherModel") = AnotherModel()
nested_model_list: List[ForwardRef("AnotherModel")] = [AnotherModel()]
nested_model_dict: Dict[str, ForwardRef("AnotherModel")] = {"key": AnotherModel()}class AnotherModel(PmModel):
name: str
YourModel.model_rebuild()another_model = AnotherModel(name="name").save()
data = {"nested_model": another_model, "nested_model_list": [another_model]}
instance = YourModel(**data).save()```
2.3 Model creation with field indexing:
```python
from pydantic_mongo import PydanticMongoModel as PmModel
from pymongo import IndexModelclass YourModel(PmModel):
name: str
age: intclass _MongoConfig:
indexes = [
IndexModel([("name", 1)]),
IndexModel([("age", 1)], unique=True)
]
YourModel(name="name", age=1).save()
YourModel(name="name", age=2).save() # will raise PyMongoError
YourModel(name="name2", age=1).save() # will raise PyMongoError```
3. Data operations:
- Retrieving by ID:
```python
instance = YourModel.get_by_id(your_id)
```- Retrieving by filter:
```python
instance = YourModel.get_by_filter({"field": "value"})
```- Saving data:
```python
instance.save()
```- Deleting data:
```python
instance.delete()
```- Retrieving objects by filter:
```python
objects = list(YourModel.objects({"field": "value"}))
```## Key Features
- `get_by_id`: Retrieve an object by its ID.
- `get_by_filter`: Retrieve an object based on a specified filter.- `save`: Save or update an object in the database.
- `delete`: Delete an object from the database.
- `objects`: Retrieve all objects that match a given filter.
- `model_dump`: Get a dictionary representation of the model.
- `model_json_schema`: Retrieve the JSON schema of the model.
- `db_ref`: Get a DBRef object for the model.
- `get_ref_objects`: Get the objects referenced to an object by a DBRef.
## Easy Document References
With PydanticMongo, creating references to other documents is straightforward.
Example:
```python
from pydantic_mongo import PydanticMongoModel as PmModelclass YourAwesomeChild(PmModel):
name: strclass YourAwesomeParent(PmModel):
name: str
children: List[YourAwesomeChild]child = YourAwesomeChild(name="Victor")
child.save()parent = YourAwesomeParent(name="Sam", children=[child])
parent.save()
print(parent) # _id="id", name="Sam", children=[_id="id", name="Victor"]
```In the database, these are represented by using bson.ObjectId linking to the `your_awesome_childs` collection.
`Note:` When a Document is referred as a db_ref, it won't be loaded until it is accessed.
This is done to avoid circular references.## Test Coverage
Made with [pytest-cov](https://pypi.org/project/pytest-cov/)
```bash
Name Stmts Miss Cover
-----------------------------------------------------
pydantic_mongo/__init__.py 2 0 100%
pydantic_mongo/base.py 63 2 97%
pydantic_mongo/base_pm_model.py 145 2 99%
pydantic_mongo/db_ref_model.py 11 0 100%
pydantic_mongo/extensions.py 28 1 96%
pydantic_mongo/helpers.py 45 0 100%
pydantic_mongo/meta.py 57 3 95%
pydantic_mongo/mongo_model.py 73 1 99%
pydantic_mongo/pm_model.py 42 0 100%
-----------------------------------------------------
TOTAL 466 9 98%
```## Contributing
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
To run the tests, use `pytest`:```bash
pytest ./tests/unit
pytest ./tests/integration
````Note:` Integration tests require a running MongoDB instance.
## Conclusion
PydanticMongo offers a powerful toolset for working with MongoDB in Flask applications, integrating seamlessly with Pydantic for data validation and serialization. Use it to simplify and structure your database-interaction code.
## TODO
- [ ] Check for all the available pydantic methods
- [ ] Check for all the available mongo types
- [ ] Add support of various DBRef types