Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/laurabeatris/algorithms-and-data-structures
Study driven repository to maintain algorithms and data structures knowledge
https://github.com/laurabeatris/algorithms-and-data-structures
algorithms big-o-notation computer-science data-structures python
Last synced: 17 days ago
JSON representation
Study driven repository to maintain algorithms and data structures knowledge
- Host: GitHub
- URL: https://github.com/laurabeatris/algorithms-and-data-structures
- Owner: LauraBeatris
- License: mit
- Created: 2021-04-09T15:49:17.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2021-04-26T21:22:21.000Z (over 3 years ago)
- Last Synced: 2024-11-10T11:24:51.469Z (3 months ago)
- Topics: algorithms, big-o-notation, computer-science, data-structures, python
- Language: Python
- Homepage:
- Size: 86.9 KB
- Stars: 10
- Watchers: 2
- Forks: 3
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Big O Notation
> Big O describes how the time is taken, or memory is used, by a program scales with the amount of data it has to work on> Big O helps us to measure the scalability of our code
> Big O is a way to indicate complexities (Space Complexity & Time Complexity)
- [Exercises](https://github.com/LauraBeatris/algorithms-and-data-structures/tree/main/big_o_notation/exercises)
- [Cheat Sheet](https://github.com/LauraBeatris/algorithms-and-data-structures/tree/main/big_o_notation/big_o_cheat_sheet.pdf)## Time Complexity
- [Linear Time - O(n)](https://github.com/LauraBeatris/algorithms-and-data-structures/tree/main/big_o_notation/time_complexity/linear_time.py)
- [Constant Time - O(1)](https://github.com/LauraBeatris/algorithms-and-data-structures/tree/main/big_o_notation/time_complexity/constant_time.py)
- [Quadratic Time - O(n^2)](https://github.com/LauraBeatris/algorithms-and-data-structures/tree/main/big_o_notation/time_complexity/quadratic_time.py)## Space Complexity
- [Linear Space - O(n)](https://github.com/LauraBeatris/algorithms-and-data-structures/tree/main/big_o_notation/space_complexity/linear_space.py)
- [Constant Space - O(1)](https://github.com/LauraBeatris/algorithms-and-data-structures/tree/main/big_o_notation/space_complexity/constant_space.py)## Rules
- [Worst Case](https://github.com/LauraBeatris/algorithms-and-data-structures/tree/main/big_o_notation/rules/worst_case.py)
- [Remove Constants](https://github.com/LauraBeatris/algorithms-and-data-structures/tree/main/big_o_notation/rules/remove_constants.py)
- [Different Terms for Inputs](https://github.com/LauraBeatris/algorithms-and-data-structures/tree/main/big_o_notation/rules/different_terms_for_inputs.py)
- [Drop Non Dominants](https://github.com/LauraBeatris/algorithms-and-data-structures/tree/main/big_o_notation/rules/drop_non_dominants.py)# Data Structures
> A data structure is a specialized format for organizing, processing, retrieving and storing data.> A data structure is a way of organizing the data so that it can be used efficiently.
## Arrays
- [Exercises](https://github.com/LauraBeatris/algorithms-and-data-structures/tree/main/data_structures/arrays/exercises)
- [Operations](https://github.com/LauraBeatris/algorithms-and-data-structures/tree/main/data_structures/arrays/arrays_operations.py)
- [Implementing an array from scratch](https://github.com/LauraBeatris/algorithms-and-data-structures/tree/main/data_structures/arrays/implement_array.py)