Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/layerai-archive/sdk
Metadata store for Production ML
https://github.com/layerai-archive/sdk
collaboration data-science data-versioning deep-learning experiment-tracking hyperparameter-optimization hyperparameter-tuning keras machine-learning mlops model-versioning python pytorch reinforcement-learning sklearn tensorflow
Last synced: 11 days ago
JSON representation
Metadata store for Production ML
- Host: GitHub
- URL: https://github.com/layerai-archive/sdk
- Owner: layerai-archive
- License: apache-2.0
- Archived: true
- Created: 2022-04-25T17:42:30.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2022-09-29T10:35:48.000Z (over 2 years ago)
- Last Synced: 2025-01-05T03:37:26.871Z (26 days ago)
- Topics: collaboration, data-science, data-versioning, deep-learning, experiment-tracking, hyperparameter-optimization, hyperparameter-tuning, keras, machine-learning, mlops, model-versioning, python, pytorch, reinforcement-learning, sklearn, tensorflow
- Language: Python
- Homepage: https://layer.ai
- Size: 2.22 MB
- Stars: 89
- Watchers: 7
- Forks: 7
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Security: SECURITY.md
Awesome Lists containing this project
README
## Layer - Metadata Store for Production ML
![Layer - Metadata store for production ML](https://app.layer.ai/assets/layer_metadata_store.png)
[Layer](https://layer.ai) helps you build, train and track all your machine learning project metadata including ML models and datasets with semantic versioning, extensive artifact logging and dynamic reporting with localโcloud training
**[Start for Free now!](https://app.layer.ai/login?returnTo=%2Fgetting-started)**
## Getting Started
Install Layer:
```shell
pip install layer --upgrade
```Login to your free account and initialize your project:
```python
import layer
layer.login()
layer.init("my-first-project")
```Decorate your training function to register your model to Layer:
```python
from layer.decorators import model@model("my-model")
def train():
from sklearn import datasets
from sklearn.svm import SVC
iris = datasets.load_iris()
clf = SVC()
clf.fit(iris.data, iris.target)
return clftrain()
```Now you can fetch your model from Layer:
```python
import layerclf = layer.get_model("my-model:1.1").get_train()
clf# > SVC()
```[**๐ Try in Google Colab now!**](https://colab.research.google.com/github/layerai/examples/blob/main/tutorials/add-models-to-layer/how_to_add_models_to_layer.ipynb)
## Reporting bugs
You have a bug, a request or a feature? Let us know on [Slack](https://bit.ly/layercommunityslack) or [open an issue](https://github.com/layerai/sdk/issues/new/choose)## Contributing code
Do you want to help us build the best metadata store? Check out the [Contributing Guide](https://github.com/layerai/sdk/blob/main/CONTRIBUTING.md)## Learn more
- Join our [Slack Community ](https://bit.ly/layercommunityslack) to connect with other Layer users
- Visit the [examples repo](https://github.com/layerai/examples) for more inspiration
- Browse [Community Projects](https://layer.ai/community) to see more use cases
- Check out the [Documentation](https://docs.layer.ai)
- [Contact us](https://layer.ai/contact-us) for your questions