Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/lcybuzz/Low-Level-Vision-Paper-Record
记录近期的 1) 图像/视频的超分增强等low level vision任务; 2) 图像生成 等任务相关论文, 主要为18年以后的DL based方法.
https://github.com/lcybuzz/Low-Level-Vision-Paper-Record
Last synced: 2 months ago
JSON representation
记录近期的 1) 图像/视频的超分增强等low level vision任务; 2) 图像生成 等任务相关论文, 主要为18年以后的DL based方法.
- Host: GitHub
- URL: https://github.com/lcybuzz/Low-Level-Vision-Paper-Record
- Owner: lcybuzz
- Created: 2020-02-25T07:22:27.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2024-08-15T05:30:49.000Z (5 months ago)
- Last Synced: 2024-08-15T06:37:41.691Z (5 months ago)
- Homepage:
- Size: 1.6 MB
- Stars: 456
- Watchers: 24
- Forks: 47
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- my-awesome - lcybuzz/Low-Level-Vision-Paper-Record - 12 star:0.5k fork:0.1k 记录近期的 1) 图像/视频的超分增强等low level vision任务; 2) 图像生成 等任务相关论文, 主要为18年以后的DL based方法. (Others)
README
# Personal repository under construction.
# Table of Contents
- Image Restoration
- Image Enhancement
- Image & Video Denoising
- Image Super Resolution
- HDR
- ISP
- Video Related
- Industry
- General
- Few Shot
- Misc
- Face Related (archived)
- Image Synthesis (archived)# Datasets
## Image datasets- [[图像处理任务数据集](https://github.com/daooshee/Image-Processing-Datasets)]
- Image Enhancement
- [MIT-Adobe FiveK Dataset](https://data.csail.mit.edu/graphics/fivek/) 单反相机拍摄的raw图像 + 5个人工retouch的tiff图, 共5k张
- [DPED](http://people.ee.ethz.ch/~ihnatova/) 手机相机和单反相机增强数据集, 使用sift做对齐, 包括来自三种手机和Canon单反的超过15k张图像对- Low Light
- [SID](http://vladlen.info/publications/learning-see-dark/)
- [ExDark](https://github.com/cs-chan/Exclusively-Dark-Image-Dataset)- [CID](https://github.com/505030475/ExtremeLowLight)
- [VV](https://sites.google.com/site/vonikakis/datasets)
- [LOL](https://daooshee.github.io/BMVC2018website/)
- [LIME](http://cs.tju.edu.cn/orgs/vision/~xguo/LIME.htm)
- [RENOIR](http://adrianbarburesearch.blogspot.com/p/renoir-dataset.html)
- [ExDARK](https://github.com/cs-chan/Exclusively-Dark-Image-Dataset)
- [SICE](https://github.com/csjcai/SICE)
- [The Extended Yale Face Database B](http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html)- Super Resolution
- [DIV2k](https://data.vision.ee.ethz.ch/cvl/DIV2K/) NTIRE17 (800 train and 100 validation)
- [Flicker2K](https://github.com/limbee/NTIRE2017) NTIRE17 (2650 2K分辨率)
- [Urban100](https://github.com/jbhuang0604/SelfExSR)- Real Image Denoising
- [DnD](https://noise.visinf.tu-darmstadt.de/)
- [SIDD](https://www.eecs.yorku.ca/~kamel/sidd/)
- [PolyU](https://github.com/csjunxu/PolyU-Real-World-Noisy-Images-Dataset)
- [Renoir](http://ani.stat.fsu.edu/~abarbu/Renoir.html)
- [CC](http://snam.ml/research/ccnoise)
- [SID](http://cchen156.web.engr.illinois.edu/SID.html)
- [kodak_color](http://r0k.us/graphics/kodak/)
- [NoiseClinicImages](http://demo.ipol.im/demo/125/input_select?044_solvay_1927.x=63&044_solvay_1927.y=68)- Real Video Denoising
- [CRVD dataset](https://github.com/cao-cong/RViDeNet) Raw视频去噪数据集. 11个室内场景, 5个ISO.- Deblurring
- [HIDE](https://github.com/joanshen0508/HA_deblur) image motion deblur
- [GOPRO](https://github.com/SeungjunNah/DeepDeblur_release) image motion deblur, 240fps, 1280x720
- [Deep Video Deblurring(Adobe240fps)](http://www.cs.ubc.ca/labs/imager/tr/2017/DeepVideoDeblurring/#dataset) video deblur
- [REDS](https://seungjunnah.github.io/Datasets/reds) 视频去模糊, 视频超分, 120fps, 1280x720
- [BSD](https://github.com/zzh-tech/ESTRNN) real-world video deblur- Dehaze
- [REISIDE](https://sites.google.com/view/reside-dehaze-datasets/reside-standard?authuser=3D0)- Face Redrawing
- [CelebA](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) 人脸属性数据集, 超过200k张图像, 5个关键点, 40个属性
- [CelebAMask-HQ](https://github.com/switchablenorms/CelebAMask-HQ) 3w张人脸解析数据集, 包括19个facial components
- [Flickr-Faces-HQ Dataset (FFHQ)](https://github.com/NVlabs/ffhq-dataset)
- [PPR10K](https://github.com/csjliang/PPR10K)- Reflection Removal
- [SIR](https://sir2data.github.io/)- AWB
- [GehlerShi](https://www2.cs.sfu.ca/~colour/data/shi_gehler/)
- [CUBE+](https://ipg.fer.hr/ipg/resources/color_constancy)- Demosaicing releated
- [MIT moire](https://groups.csail.mit.edu/graphics/demosaicnet/dataset.html)
- [McMaster](https://groups.csail.mit.edu/graphics/demosaicnet/dataset.html) 18张RGB, 500x500, 一般用于测试
- [Kodak](https://r0k.us/graphics/kodak/) 24张真全彩色RGB图像, 768x512, 一般用于测试## Video datasets
- [Vimeo-90k](http://toflow.csail.mit.edu/) 超分, 插帧, 30fps
- [Middlebury](https://vision.middlebury.edu/flow/) 光流估计, 视频插帧
- [UCF101](https://www.crcv.ucf.edu/data/UCF101.php) 视频动作识别
- [X4K1000FPS](https://github.com/JihyongOh/XVFI) 4k分辨率,1000fps
- [DAVIS](https://davischallenge.org/index.html) 视频分割, 1080p, 24fps# Competitions
- **[CVPR NTIRE]** New Trends in Image Restoration and Enhancement Challenges, 图像超分辨率、图像去噪、去模糊、去摩尔纹、重建、去雾
- **[MIPI]** Mobile Intelligent Photography & Imaging
- **[MAI]** Mobile AI Workshop (CVPR workshop).
- **[CVPR LPCVC]** Low Power Computer Vision Challenge, 低功耗计算机视觉、目标检测、图像分类
- **[ECCV AIM]** Advances in Image Manipulation workshop and challenges
- **[ECCV PIRM]** Perceptual Image Restoration and Manipulation, 貌似只有18, 19两届# Resources
## Paper collection
- Conference paper collection
- [[ICCV 2023](https://github.com/extreme-assistant/ICCV2023-Paper-Code-Interpretation)]
[[ICCV 2023](https://github.com/DmitryRyumin/ICCV-2023-Papers)]
- [[CVPR 2023](https://github.com/extreme-assistant/CVPR2023-Paper-Code-Interpretation/blob/master/CVPR2023.md)]
[[CVPR 2023](https://github.com/amusi/CVPR2023-Papers-with-Code)]
[[CVPR 2023](https://github.com/DmitryRyumin/CVPR-2023-Papers)]
[[CVPR 2022](https://github.com/extreme-assistant/CVPR2022-Paper-Code-Interpretation)]
[[CVPR 2022](https://github.com/amusi/CVPR2022-Papers-with-Code)]
[[CVPR 2021](https://github.com/52CV/CVPR-2021-Papers)]
[[CVPR 2020](https://github.com/extreme-assistant/CVPR2020-Paper-Code-Interpretation)]
- [[ECCV 2022](https://github.com/extreme-assistant/ECCV2022-Paper-Code-Interpretation)]
- [[ICCV 2021](https://github.com/extreme-assistant/ICCV2021-Paper-Code-Interpretation/blob/master/ICCV2021.md)]- Low level vision conference paper collection
- [[ICCV 2023](https://github.com/DarrenPan/Awesome-ICCV2023-Low-Level-Vision)]
- [CVPR 2024](https://github.com/Kobaayyy/Awesome-CVPR2024-CVPR2021-CVPR2020-Low-Level-Vision/blob/master/CVPR2024.md)]
[[CVPR 2023](https://github.com/DarrenPan/Awesome-CVPR2023-Low-Level-Vision)]
[[CVPR 2022](https://github.com/DarrenPan/CVPR2022-Low-Level-Vision)]
[[CVPR 2021/2020](https://github.com/Kobaayyy/Awesome-CVPR2021-CVPR2020-Low-Level-Vision/blob/master/CVPR2021.md)]
- [[ECCV 2022](https://github.com/DarrenPan/Awesome-ECCV2022-Low-Level-Vision)]
[[ECCV 2020](https://zhuanlan.zhihu.com/p/180551773)]
- [[ICCV 2023](https://github.com/DarrenPan/Awesome-ICCV2023-Low-Level-Vision)]
- [[ICCV 2021](https://github.com/Kobaayyy/Awesome-ICCV2021-Low-Level-Vision)]- Paper collection on low-level tasks
- [[超分论文整理1](https://github.com/ChaofWang/Awesome-Super-Resolution)] [[图像/视频超分论文整理2](https://github.com/HymEric/latest-development-of-ISR-VSR)] [[图像/视频超分方法TF复现](https://github.com/LoSealL/VideoSuperResolution)]- [[VideoSuperResolution](https://github.com/LoSealL/VideoSuperResolution)] A collection of state-of-the-art video or single-image super-resolution architectures, reimplemented in TF
- Low light enhancement [[Project 1](https://github.com/dawnlh/awesome-low-light-image-enhancement)] [[Project 2](https://github.com/cxtalk/You-Can-See-Clearly-Now)] [[Project 3](https://github.com/Elin24/Awesome-Low-Light-Enhancement)]
- [[image-to-image translation](https://github.com/weihaox/awesome-image-translation)]- [[Deblurring](https://github.com/subeeshvasu/Awesome-Deblurring)]
- [[SimDeblur](https://github.com/ljzycmd/SimDeblur)] 多个deep-learning based图像和视频去模糊Pytorch代码实现- [[Awesome Image or Video Denoising Algorithms](https://github.com/z-bingo/awesome-image-denoising-state-of-the-art)] [[Denoising with codes](https://github.com/wenbihan/reproducible-image-denoising-state-of-the-art)]
- [[Awesome Face Restoratio](https://github.com/TaoWangzj/Awesome-Face-Restoration)]
## Codes
- [[Stability-AI](https://github.com/Stability-AI/generative-models)]
- [[IOPaint](https://github.com/Sanster/IOPaint)]
- [[各种对比度增强算法代码 Matlab](https://github.com/baidut/OpenCE)]
- [[一些基于C++的对比度增强算法实现](https://github.com/dengyueyun666/Image-Contrast-Enhancement)]
- [[HDR ISP pipeline (C++)](https://github.com/JokerEyeAdas/HDR-ISP)]
- [[openISP (Python)](https://github.com/cruxopen/openISP)]
- [[RawTherapee](https://github.com/Beep6581/RawTherapee)]
- [[数据增强library](https://github.com/albumentations-team/albumentations)]## 博客/专栏/资讯
- [[传统图像质量增强的系列blog-1](https://www.cnblogs.com/Imageshop/category/535367.html)]
- [[传统图像质量增强的系列blog-2](https://blog.csdn.net/maozefa/article/list/1)]
- [[图像处理相关](https://blog.csdn.net/aoman_hao/category_9353856.html?spm=1001.2014.3001.5482)]
- [无法抗拒的图像技术](https://www.zhihu.com/column/sining)
- [All in Camera](https://www.zhihu.com/column/allincamera)
- [Color Image Processing](https://www.zhihu.com/column/ColorImageProcessing)
- [计算摄影学](https://www.zhihu.com/column/hawkcp)- [AIWalker](https://www.zhihu.com/column/c_1252624169897562112)
- [GiantPandaCV](https://www.zhihu.com/column/giantpandacv)
- [极市平台](https://www.zhihu.com/column/c_1027917842385129473)
- [CVer](https://www.zhihu.com/column/c_172507674)## Misc
- [[Mobile AI benchmark](http://ai-benchmark.com/index.html#title)]- [[Waifu2x-Extension-GUI](https://github.com/AaronFeng753/Waifu2x-Extension-GUI)] Image & GIF & Video Super-Resolution and Video Frame Interpolation using DNNs
- [[Photons to Photos](https://www.photonstophotos.net/index.htm)]
- [[Colour Science for Python](https://github.com/colour-science/colour)]
- [[数据增强albumentations](https://github.com/albumentations-team/albumentations)]
- [[RawTherapee](https://github.com/Beep6581/RawTherapee)]