Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/leabrodyheine/ml-kaggle-cirrhosis-data
This project showcases skills in machine learning, data preprocessing, and model evaluation using Python libraries such as scikit-learn, XGBoost, and Optuna. It involves implementing various machine learning models, handling imbalanced data, and employing imputation techniques to enhance model performance for predicting cirrhosis outcomes.
https://github.com/leabrodyheine/ml-kaggle-cirrhosis-data
data-analysis data-pre imbalanced-data imputation machine-learning optuna pipeline scikit-learn xgboost
Last synced: 4 days ago
JSON representation
This project showcases skills in machine learning, data preprocessing, and model evaluation using Python libraries such as scikit-learn, XGBoost, and Optuna. It involves implementing various machine learning models, handling imbalanced data, and employing imputation techniques to enhance model performance for predicting cirrhosis outcomes.
- Host: GitHub
- URL: https://github.com/leabrodyheine/ml-kaggle-cirrhosis-data
- Owner: leabrodyheine
- Created: 2024-03-18T14:19:34.000Z (10 months ago)
- Default Branch: main
- Last Pushed: 2024-04-05T13:41:26.000Z (10 months ago)
- Last Synced: 2024-11-12T21:41:34.486Z (2 months ago)
- Topics: data-analysis, data-pre, imbalanced-data, imputation, machine-learning, optuna, pipeline, scikit-learn, xgboost
- Language: Jupyter Notebook
- Homepage:
- Size: 12.6 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files: