Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/leandromineti/ml-feynman-experience
A collection of analytics methods implemented with Python on Google Colab
https://github.com/leandromineti/ml-feynman-experience
machine-learning notebook numpy python scipy statistics
Last synced: 23 days ago
JSON representation
A collection of analytics methods implemented with Python on Google Colab
- Host: GitHub
- URL: https://github.com/leandromineti/ml-feynman-experience
- Owner: leandromineti
- License: mit
- Created: 2018-11-27T12:44:00.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2020-03-16T13:12:37.000Z (over 4 years ago)
- Last Synced: 2024-10-01T02:02:25.037Z (about 1 month ago)
- Topics: machine-learning, notebook, numpy, python, scipy, statistics
- Homepage:
- Size: 1.85 MB
- Stars: 218
- Watchers: 14
- Forks: 12
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Machine Learning Feynman Experience
> "What I cannot create, I do not understand" - Feynman.
This is a collection of concepts I tried to implement using only [Python](https://www.python.org/), [NumPy](http://www.numpy.org/) and [SciPy](https://www.scipy.org/scipylib/index.html) on [Google Colaboratory](https://colab.research.google.com/notebooks/welcome.ipynb). If you want to play with the code, feel free to copy the notebook and have fun.
## Notebooks
- [Law of large numbers](https://colab.research.google.com/drive/1OrXdXaz7gloahVuv6aIgXwCgs6C7S_oE)
- [Markov chains](https://colab.research.google.com/drive/104V2fY3wQc5m0af_xm7DsRNgpiVPh8x-)
- [Single parameter frequentist inference](https://colab.research.google.com/drive/1rFwHTN7OyrjhOKUY3P3d9C0Rz1d6sad7)
- [Simple linear regression](https://colab.research.google.com/drive/1NUtc-TWBTe2XVD2xdkjwPD4sc43Ozf0g)
- [Multiple linear regression](https://colab.research.google.com/drive/1DMmQ_aVQhRZ7bwIgFFSElCxgTpWCt74f)### Work in progress
- [Generalized linear models](https://colab.research.google.com/drive/1tJQfD2IGNBhRbnksOPlC0ugNjGEBKC6i)
- [Expectation maximization](https://colab.research.google.com/drive/1nqlu2-0uei2Wmck781EHuW-N2JpfSIG7)### To do
- \[ \] Principal component analysis
- \[ \] Linear discriminant analysis
- \[ \] Central limit theorem
- \[ \] Single parameter bayesian inference
- \[ \] Decision tree
- \[ \] Random Forest
- \[ \] Support vector machine
- \[ \] Perceptron
- \[ \] Gradient boosting machine
- \[ \] Autoregressive models### Contributions
If you spot a mistake or omission, please feel free to create a new issue.
### References
- Casella, G., & Berger, R. L. (2002). Statistical inference (Vol. 2). Pacific Grove, CA: Duxbury.
- Costa, M. A. (2019). Tópicos em ciência dos dados: Introdução aos modelos paramétricos e seus aplicações utilizando o R. Bonecker.
- DeGroot, M. H., & Schervish, M. J. (2012). Probability and statistics. Pearson Education.
- Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (2nd ed). New York, NY: Springer.
- **Cover image**: Dr. Richard Feynman during the Special Lecture: *the Motion of Planets Around the Sun*. Public Domain. Created: 13 March 1964.