Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/learnables/torchml
Scikit-learn implemented with PyTorch
https://github.com/learnables/torchml
machine-learning pytorch scikit-learn
Last synced: 2 months ago
JSON representation
Scikit-learn implemented with PyTorch
- Host: GitHub
- URL: https://github.com/learnables/torchml
- Owner: learnables
- License: mit
- Created: 2022-04-16T03:35:16.000Z (over 2 years ago)
- Default Branch: master
- Last Pushed: 2023-05-30T20:04:20.000Z (over 1 year ago)
- Last Synced: 2024-09-14T12:47:33.470Z (3 months ago)
- Topics: machine-learning, pytorch, scikit-learn
- Language: Python
- Homepage: http://learnables.net/torchml/
- Size: 23.2 MB
- Stars: 6
- Watchers: 5
- Forks: 0
- Open Issues: 16
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
README
--------------------------------------------------------------------------------
![Test Status](https://github.com/learnables/torchml/workflows/Testing/badge.svg?branch=master)
`torchml` implements the scikit-learn API on top of PyTorch.
This means we automatically get GPU support for scikit-learn and, when possible, differentiability.## Resources
- GitHub: [github.com/learnables/torchml](http://github.com/learnables/torchml)
- Documentation: [learnables.net/torchml](http://learnables.net/torchml/)
- Tutorials: [learnables.net/torchml/tutorials](http://learnables.net/torchml/tutorials/linear_model/)
- Examples: [learnables.net/torchml/examples](https://github.com/learnables/torchml/tree/master/examples)## Getting Started
`pip install torchml`
### Minimal Linear Regression Example
~~~python
import torchml as ml(X_train, y_train), (X_test, y_test) = generate_data()
# API closely follows scikit-learn
linreg = ml.linear_model.LinearRegression()
linreg.fit(X_train, y_train)
linreg.predict(X_test)
~~~## Changelog
A human-readable changelog is available in the [CHANGELOG.md](./CHANGELOG.md) file.
## Citing
To cite `torchml` repository in your academic publications, please use the following reference.
> Sébastien M. R. Arnold, Lucy Xiaoyang Shi, Xinran Gao, Zhiheng Zhang, and Bairen Chen. 2023. "torchml: a scikit-learn implementation on top of PyTorch".
You can also use the following Bibtex entry:
~~~bib
@misc{torchml,
author={Arnold, S{\'e}bastien M R and Shi, Lucy Xiaoyang and Gao, Xinran and Zhang, Zhiheng and Chen, Bairen},
title={torchml: A scikit-learn implementation on top of PyTorch},
year={2023},
url={https://github.com/learnables/torchml},
}
~~~