Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/lehgtrung/egfr-att
Drug effect prediction using neural network
https://github.com/lehgtrung/egfr-att
attention-mechanism classification cnn drug-discovery egfr
Last synced: 3 months ago
JSON representation
Drug effect prediction using neural network
- Host: GitHub
- URL: https://github.com/lehgtrung/egfr-att
- Owner: lehgtrung
- Created: 2019-04-07T18:33:12.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2020-09-14T07:55:57.000Z (about 4 years ago)
- Last Synced: 2024-07-16T17:01:04.161Z (4 months ago)
- Topics: attention-mechanism, classification, cnn, drug-discovery, egfr
- Language: Python
- Homepage:
- Size: 18.4 MB
- Stars: 19
- Watchers: 3
- Forks: 6
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-drug-discovery - [Python Reference
README
Attention-based Multi-input Neural network
=============
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/attention-based-multi-input-deep-learning/drug-discovery-on-egfr-inh)](https://paperswithcode.com/sota/drug-discovery-on-egfr-inh?p=attention-based-multi-input-deep-learning)## How to install
Using `conda`:
```bash
conda env create -n egfr -f environment.yml
conda activate egfr
```## Usage
The working folder is `egfr-att/egfr` for the below instruction.
#### To train with Train/Test scheme, use:
```bash
python single_run.py --mode train
```
The original data will be splitted into training/test parts with ratio 8:2.
When training completed, to evaluate on test data, use:
```bash
python single_run.py --mode test --model_path
# For example:
python single_run.py --mode test --model_path data/trained_models/model_TEST_BEST
```
ROC curve plot for test data will be placed in egfr/vis folder.#### To train with 5-fold cross validation scheme, use:
```bash
python cross_val.py --mode train
```
When training completed, to evaluate on test data, use:
```bash
python cross_val.py --mode test --model_path
# For example:
python cross_val.py --mode test --model_path data/trained_models/model_TEST_BEST
```
ROC curve plot for test data will be placed in `egfr/vis/` folder.#### Attention weight visualization
To visualized attention weight of the model, use:
```bash
python weight_vis.py --dataset --modelpath
# For example:
python weight_vis.py --dataset data/egfr_10_full_ft_pd_lines.json --modelpath data/trained_models/model_TEST_BEST
```
By default, all data will be used to to extract attention weights. However,
only samples with prediction output over a threshold (0.2) are chosen.## Citation
Please cite our study:
```
Pham, H.N., & Le, T.H. (2019). Attention-based Multi-Input Deep Learning Architecture for Biological Activity Prediction: An Application in EGFR Inhibitors. ArXiv, abs/1906.05168.
```Bibtex:
```
@article{Pham2019AttentionbasedMD,
title={Attention-based Multi-Input Deep Learning Architecture for Biological Activity Prediction: An Application in EGFR Inhibitors},
author={Huy Ngoc Pham and Trung Hoang Le},
journal={2019 11th International Conference on Knowledge and Systems Engineering (KSE)},
year={2019},
pages={1-9}
}
```