Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lehgtrung/egfr-att

Drug effect prediction using neural network
https://github.com/lehgtrung/egfr-att

attention-mechanism classification cnn drug-discovery egfr

Last synced: 3 months ago
JSON representation

Drug effect prediction using neural network

Awesome Lists containing this project

README

        

Attention-based Multi-input Neural network
=============
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/attention-based-multi-input-deep-learning/drug-discovery-on-egfr-inh)](https://paperswithcode.com/sota/drug-discovery-on-egfr-inh?p=attention-based-multi-input-deep-learning)

## How to install

Using `conda`:
```bash
conda env create -n egfr -f environment.yml
conda activate egfr
```

## Usage

The working folder is `egfr-att/egfr` for the below instruction.

#### To train with Train/Test scheme, use:
```bash
python single_run.py --mode train
```
The original data will be splitted into training/test parts with ratio 8:2.
When training completed, to evaluate on test data, use:
```bash
python single_run.py --mode test --model_path
# For example:
python single_run.py --mode test --model_path data/trained_models/model_TEST_BEST
```
ROC curve plot for test data will be placed in egfr/vis folder.

#### To train with 5-fold cross validation scheme, use:
```bash
python cross_val.py --mode train
```
When training completed, to evaluate on test data, use:
```bash
python cross_val.py --mode test --model_path
# For example:
python cross_val.py --mode test --model_path data/trained_models/model_TEST_BEST
```
ROC curve plot for test data will be placed in `egfr/vis/` folder.

#### Attention weight visualization
To visualized attention weight of the model, use:
```bash
python weight_vis.py --dataset --modelpath
# For example:
python weight_vis.py --dataset data/egfr_10_full_ft_pd_lines.json --modelpath data/trained_models/model_TEST_BEST
```
By default, all data will be used to to extract attention weights. However,
only samples with prediction output over a threshold (0.2) are chosen.

## Citation
Please cite our study:
```
Pham, H.N., & Le, T.H. (2019). Attention-based Multi-Input Deep Learning Architecture for Biological Activity Prediction: An Application in EGFR Inhibitors. ArXiv, abs/1906.05168.
```

Bibtex:
```
@article{Pham2019AttentionbasedMD,
title={Attention-based Multi-Input Deep Learning Architecture for Biological Activity Prediction: An Application in EGFR Inhibitors},
author={Huy Ngoc Pham and Trung Hoang Le},
journal={2019 11th International Conference on Knowledge and Systems Engineering (KSE)},
year={2019},
pages={1-9}
}
```