Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/leoduan/TransportMonteCarlo
https://github.com/leoduan/TransportMonteCarlo
Last synced: 14 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/leoduan/TransportMonteCarlo
- Owner: leoduan
- Created: 2019-08-20T14:05:54.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2020-07-30T17:42:27.000Z (over 4 years ago)
- Last Synced: 2024-08-01T16:48:04.927Z (3 months ago)
- Language: Jupyter Notebook
- Size: 1.22 MB
- Stars: 8
- Watchers: 1
- Forks: 3
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Transport Monte Carlo
Example code for using Transport Monte Carlo --- using random transport plan and optimization to rapidly estimate the posterior distribution
1. Sampling from a Normal Mixture:
https://nbviewer.jupyter.org/github/leoduan/TransportMonteCarlo/blob/master/gaussianMixtureTMC.ipynb2. Sampling from a multi-modal distribution (Liang 2005):
https://nbviewer.jupyter.org/github/leoduan/TransportMonteCarlo/blob/master/MultimodalTMC.ipynb3. High-dimensional regression using the regularized horseshoe prior (Piironen and Vehtari 2017) :
https://nbviewer.jupyter.org/github/leoduan/TransportMonteCarlo/blob/master/regularizedHorseshoe.ipynb4. Binary adjacency matrix estimation under degree regularization:
https://github.com/leoduan/TransportMonteCarlo/blob/master/edgeSamplingUnderDegreeReg.ipynbFor other target distribution, simply modify the log-prior-likelihood function.
For reference, see
Leo L. Duan. Transport Monte Carlo 2019+. http://arxiv.org/abs/1907.10448