Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/leonardodalinky/fpsample

Python efficient farthest point sampling (FPS) library. Compatible with numpy.
https://github.com/leonardodalinky/fpsample

farthest-point-sampling point-cloud python

Last synced: 4 days ago
JSON representation

Python efficient farthest point sampling (FPS) library. Compatible with numpy.

Awesome Lists containing this project

README

        

# fpsample
[![pypi package version badge](https://img.shields.io/pypi/v/fpsample)](https://pypi.org/project/fpsample/)
![python version badge](https://img.shields.io/badge/python-%3E%3D3.7-blue)
[![license badge](https://img.shields.io/github/license/leonardodalinky/fpsample)](https://github.com/leonardodalinky/fpsample/blob/main/LICENSE)
[![star badge](https://img.shields.io/github/stars/leonardodalinky/fpsample?style=social)](https://github.com/leonardodalinky/fpsample)

Python efficient farthest point sampling (FPS) library, 100x faster than `numpy` implementation.

`fpsample` is coupled with `numpy` and built upon Rust pyo3 bindings. This library aims at achieving the best performance for FPS in single-threaded CPU environment.

🎉 **PyTorch version with native multithreading, batch ops, Autograd and CUDA supports is in [pytorch_fpsample](https://github.com/leonardodalinky/pytorch_fpsample).**

## Installation

### Install from PyPI

`numpy>=1.16.0` is required. Install `fpsample` using pip:

```shell
pip install -U fpsample
```

*NOTE: Only 64 bit package provided.*

If you encounter any installation errors, please make an issue and try to compile from source.

### Build from source

The library is built using [maturin](https://github.com/PyO3/maturin). Therefore, `rust` and `cargo` are required for compiling.

```shell
pip install -r requirements.txt
```

C++ compiler must support C++14. For example, `gcc>=8` or `clang>=5`.

Build the library and install using:
```shell
maturin develop --release
```

#### Compile options

For macos users, if the compilation fails to link libstdc++, try to pass `FORCE_CXXSTDLIB=c++` as an environment variable.

For users that want larger maximum dimension support (currently set to 8), modify `build_info.rs` and compile.

#### Direct porting of `QuickFPS`

See `src/bucket_fps/c_warpper.cpp` and `src/bucket_fps/_ext/` for details.

## Usage

```python
import fpsample
import numpy as np

# Generate random point cloud
pc = np.random.rand(4096, 3)
## sample 1024 points

# Vanilla FPS
fps_samples_idx = fpsample.fps_sampling(pc, 1024)

# FPS + NPDU
fps_npdu_samples_idx = fpsample.fps_npdu_sampling(pc, 1024)
## or specify the windows size
fps_npdu_samples_idx = fpsample.fps_npdu_sampling(pc, 1024, k=64)

# FPS + NPDU + KDTree
fps_npdu_kdtree_samples_idx = fpsample.fps_npdu_kdtree_sampling(pc, 1024)
## or specify the windows size
fps_npdu_kdtree_samples_idx = fpsample.fps_npdu_kdtree_sampling(pc, 1024, k=64)

# KDTree-based FPS
kdtree_fps_samples_idx = fpsample.bucket_fps_kdtree_sampling(pc, 1024)

# NOTE: Probably the best
# Bucket-based FPS or QuickFPS
kdline_fps_samples_idx = fpsample.bucket_fps_kdline_sampling(pc, 1024, h=3)
```

* `FPS`: Vanilla farthest point sampling. Implemented in Rust. Achieve the same performance as `numpy`.
* `FPS + NPDU`: Farthest point sampling with nearest-point-distance-updating (NPDU) heuristic strategy. 5x~10x faster than vanilla FPS. **Require dimensional locality and give sub-optimal answers**.
* `FPS + NPDU + KDTree`: Farthest point sampling with NPDU heuristic strategy and KDTree. 3x~8x faster than vanilla FPS. Slightly slower than `FPS + NPDU`. But **DOES NOT** require dimensional locality.
* `KDTree-based FPS`: A farthest point sampling algorithm based on KDTree. About 40~50x faster than vanilla FPS.
* `Bucket-based FPS` or `QuickFPS`: A bucket-based farthest point sampling algorithm. About 80~100x faster than vanilla FPS. Require an additional hyperparameter for the height of the KDTree. In practice, `h=3` or `h=5` is recommended for small data, `h=7` is recommended for medium data, and `h=9` for extremely large data.

> **NOTE**: 🔥 In most cases, `Bucket-based FPS` is the best choice, with proper hyperparameter setting.

### Determinism

For deterministic results, fix the first sampled point index by passing the `start_idx` parameter.
```python
kdline_fps_samples_idx = fpsample.bucket_fps_kdline_sampling(pc, 1024, h=3, start_idx=0)
```

**OR** set the random seed before calling the function.
```python
np.random.seed(42)
```

## Performance
Setup:
- CPU: Intel(R) Core(TM) i9-10940X CPU @ 3.30GHz
- RAM: 128 GiB
- SYSTEM: Ubuntu 22.04.3 LTS

Run benchmark:
```shell
pytest bench/ --benchmark-columns=mean,stddev --benchmark-sort=mean
```

Results:
```
---------------- benchmark '1024 of 4096': 7 tests -----------------
Name (time in ms) Mean StdDev
--------------------------------------------------------------------
test_bucket_fps_kdline_4k_h5 1.9469 (1.0) 0.0354 (1.54)
test_bucket_fps_kdline_4k_h3 2.0028 (1.03) 0.0750 (3.27)
test_fps_npdu_4k 3.3361 (1.71) 0.0229 (1.0)
test_bucket_fps_kdline_4k_h7 3.6899 (1.90) 0.0548 (2.39)
test_bucket_fps_kdtree_4k 6.5072 (3.34) 0.4018 (17.52)
test_fps_npdu_kdtree_4k 12.3689 (6.35) 0.0380 (1.66)
test_vanilla_fps_4k 14.1073 (7.25) 0.4171 (18.20)
--------------------------------------------------------------------

----------------- benchmark '4096 of 50000': 7 tests -----------------
Name (time in ms) Mean StdDev
----------------------------------------------------------------------
test_bucket_fps_kdline_50k_h7 25.7244 (1.0) 0.5605 (1.0)
test_bucket_fps_kdline_50k_h5 30.0820 (1.17) 0.5973 (1.07)
test_bucket_fps_kdline_50k_h3 59.9939 (2.33) 1.0208 (1.82)
test_bucket_fps_kdtree_50k 98.2151 (3.82) 5.1610 (9.21)
test_fps_npdu_50k 129.3240 (5.03) 0.5638 (1.01)
test_fps_npdu_kdtree_50k 287.4457 (11.17) 8.5040 (15.17)
test_vanilla_fps_50k 794.4958 (30.88) 5.2105 (9.30)
----------------------------------------------------------------------

------------------- benchmark '50000 of 100000': 7 tests -------------------
Name (time in ms) Mean StdDev
----------------------------------------------------------------------------
test_bucket_fps_kdline_100k_h7 247.6833 (1.0) 4.8640 (6.85)
test_bucket_fps_kdline_100k_h5 393.8612 (1.59) 3.8099 (5.37)
test_bucket_fps_kdtree_100k 419.4466 (1.69) 8.5836 (12.09)
test_bucket_fps_kdline_100k_h9 437.0670 (1.76) 2.8537 (4.02)
test_fps_npdu_100k 2,990.6574 (12.07) 0.7101 (1.0)
test_fps_npdu_kdtree_100k 4,236.8786 (17.11) 3.3208 (4.68)
test_vanilla_fps_100k 20,131.7747 (81.28) 155.4407 (218.91)
----------------------------------------------------------------------------
```

## Reference
The nearest-point-distance-updating (NPDU) heuristic strategy is proposed in the following paper:
```bibtex
@INPROCEEDINGS{Li2022adjust,
author={Li, Jingtao and Zhou, Jian and Xiong, Yan and Chen, Xing and Chakrabarti, Chaitali},
booktitle={2022 IEEE Workshop on Signal Processing Systems (SiPS)},
title={An Adjustable Farthest Point Sampling Method for Approximately-sorted Point Cloud Data},
year={2022},
volume={},
number={},
pages={1-6},
doi={10.1109/SiPS55645.2022.9919246}
}
```

Bucket-based farthest point sampling (QuickFPS) is proposed in the following paper. The implementation is based on the author's [Repo](https://github.com/hanm2019/bucket-based_farthest-point-sampling_CPU). To port the implementation to other C++ program, check [this](https://github.com/leonardodalinky/fpsample/tree/main/src/bucket_fps/_ext) for details.
```bibtex
@article{han2023quickfps,
title={QuickFPS: Architecture and Algorithm Co-Design for Farthest Point Sampling in Large-Scale Point Clouds},
author={Han, Meng and Wang, Liang and Xiao, Limin and Zhang, Hao and Zhang, Chenhao and Xu, Xiangrong and Zhu, Jianfeng},
journal={IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems},
year={2023},
publisher={IEEE}
}
```

Thanks to the authors for their great work.