Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/letianlee/bert-jittor
A BERT model built with Jittor | 计图版 BERT 模型 | 计图 NLP 教程
https://github.com/letianlee/bert-jittor
bert bert-model jittor jittor-tutorial language-model nlp nlp-tutorial text-classification
Last synced: about 2 months ago
JSON representation
A BERT model built with Jittor | 计图版 BERT 模型 | 计图 NLP 教程
- Host: GitHub
- URL: https://github.com/letianlee/bert-jittor
- Owner: LetianLee
- License: apache-2.0
- Created: 2022-04-15T22:33:19.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2022-08-11T11:16:25.000Z (over 2 years ago)
- Last Synced: 2023-08-04T02:13:45.224Z (over 1 year ago)
- Topics: bert, bert-model, jittor, jittor-tutorial, language-model, nlp, nlp-tutorial, text-classification
- Language: Jupyter Notebook
- Homepage:
- Size: 329 KB
- Stars: 5
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# BERT-Jittor
A BERT model built with Jittor.# BERT 计图版
本项目采用 计图(Jittor) 框架实现 BERT 模型。请阅读示例:
[*计图 NLP 教程 - BERT分类器.ipynb*](https://github.com/LetianLee/BERT-Jittor/blob/main/%E8%AE%A1%E5%9B%BE%20NLP%20%E6%95%99%E7%A8%8B%20-%20BERT%E5%88%86%E7%B1%BB%E5%99%A8.ipynb)## 说明
### 1. 环境与安装
首先,下载并安装 Anaconda3。 官网下载地址为: https://www.anaconda.com/products/distribution#Downloads
然后,执行以下命令:
```bash
# Create a conda envs
conda create -n bert_jittor python=3.7 ipython
conda activate bert_jittor# Install Jittor
pip install jittor# Install other libraries
pip install jupyter==1.0.0
pip install pandas==1.2.4
pip install matplotlib==3.3.4
pip install seaborn==0.11.1
```### 2. 启动 Jupyter 并查看示例教程
在命令行中输入 ```jupyter notebook``` 启动。随后即可浏览并运行示例教程。