Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/letianzj/QuantResearch
Quantitative analysis, strategies and backtests
https://github.com/letianzj/QuantResearch
algorithmic-trading algotrading asset-allocation asset-management backtesting-trading-strategies backtests data-science deep-learning derivatives-pricing financial-analysis machine-learning pairs-trading portfolio-management quantitative-finance quantitative-trading reinforcement-learning risk-management statistical-arbitrage trading-algorithms trading-strategies
Last synced: 3 months ago
JSON representation
Quantitative analysis, strategies and backtests
- Host: GitHub
- URL: https://github.com/letianzj/QuantResearch
- Owner: letianzj
- License: mit
- Created: 2020-06-27T02:38:42.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2023-08-26T12:16:05.000Z (over 1 year ago)
- Last Synced: 2024-10-22T22:25:53.734Z (3 months ago)
- Topics: algorithmic-trading, algotrading, asset-allocation, asset-management, backtesting-trading-strategies, backtests, data-science, deep-learning, derivatives-pricing, financial-analysis, machine-learning, pairs-trading, portfolio-management, quantitative-finance, quantitative-trading, reinforcement-learning, risk-management, statistical-arbitrage, trading-algorithms, trading-strategies
- Language: Jupyter Notebook
- Homepage: https://letianzj.github.io/
- Size: 25.7 MB
- Stars: 1,993
- Watchers: 68
- Forks: 427
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-ai-in-finance - QuantResearch - Quantitative analysis, strategies and backtests https://letianzj.github.io/ (Courses & Books & Blogs)
- awesome - letianzj/QuantResearch - Quantitative analysis, strategies and backtests (Jupyter Notebook)
- awesome - letianzj/QuantResearch - Quantitative analysis, strategies and backtests (Jupyter Notebook)
README
# QuantResearch
* [Backtest](./backtest)
* [Machine Learning and Deep Reinforcement Learning](./ml)
* [Online Resources](./Resources.md)
* [Live Trading Demo Video](https://youtu.be/CrsrTxqiXNY)## Notebooks and Blogs
|Index |Notebooks |Blogs |
|----:|:---------------------------------------------------------------------------------|-----------:|
|1 | [Portfolio Optimization One](./notebooks/portfolio_management_one.py) |[link](https://letianzj.github.io/portfolio-management-one.html)|
|2 | [Value at Risk One](./notebooks/value_at_risk_one.py) |[link](https://letianzj.github.io/value-at-risk-one.html)|
|3 | [Classical Linear Regression](./notebooks/classical_linear_regression.py) |[link](https://letianzj.github.io/classical-linear-regression.html)|
|4 | [Bayesian Linear Regression](./notebooks/bayesian_linear_regression.py) |[link](https://letianzj.github.io/bayesian-linear-regression.html)|
|5 | [MCMC Linear Regression](./notebooks/mcmc_linear_regression.py) |[link](https://letianzj.github.io/mcmc-linear-regression.html)|
|6 | [Kalman Filter Linear Regression](./notebooks/kalman_filter_linear_regression.py) |[link](https://letianzj.github.io/kalman-filter-linear-regression.html)|
|7 | [Tensorflow Linear Regression](./notebooks/tensorflow_linear_regression.ipynb) |[link](https://letianzj.github.io/tensorflow-linear-regression.html)|
|8 | [quanttrader](https://github.com/letianzj/quanttrader) |[link](https://letianzj.github.io/quanttrading-backtest.html)|
|9 | [Mean Reversion](./notebooks/mean_reversion.py) |[link](https://letianzj.github.io/mean-reversion.html)|
|10 | [Cointegration and Pairs Trading](./notebooks/cointegration_pairs_trading.py) |[link](https://letianzj.github.io/cointegration-pairs-trading.html)|
|11 | [Kalman Filter and Pairs Trading](./notebooks/pairs_trading_kalman_filter.py) |[link](https://letianzj.github.io/kalman-filter-pairs-trading.html)|
|12 | [Hidden Markov Chain](./notebooks/hidden_markov_chain.py) |[link](https://letianzj.github.io/hidden-markov-chain.html)|
|13 | [RNN Stock Prediction](./notebooks/rnn_stock_prediction.py) |[link](https://letianzj.github.io/rnn-stock-prediction.html)|
|14 | [Principal Componenet Analysis](./notebooks/ch1_pca_relative_value.ipynb) |[link](https://letianzj.gitbook.io/systematic-investing/products_and_methodologies/fixed_income)|
|15 | [ARIMA and GARCH Models](./notebooks/arima_garch.ipynb) |[link](https://letianzj.github.io/arima-garch-model.html)|
|16 | [Fama-French three-factor](./notebooks/fama_french.ipynb) | |
|17 | [Vector AutoRegression](./notebooks/vector_autoregression.ipynb) | |
|18 | [Gaussian Mixture and Markov Switching](./notebooks/gaussian_mixture_markov_switching.ipynb) |[link](https://letianzj.github.io/gaussian-mixture-markov-regime-switching.html)|
|19 | [Portfolio Optimization Two](./backtest/portfolio_optimization.py) |[link](https://letianzj.github.io/portfolio-management-two.html)|
|20 | [Volume Factor Evaluation Alphalens](./notebooks/volume_factor_alphalens.ipynb) | |
|21 | [Reinforcement Backtest](./backtest/trading_env.py) | |
|22 | [Reinforcement Option Pricing](./ml/american_option.ipynb) |[link](https://medium.com/@letian.zj/option-pricing-using-reinforcement-learning-ad2ddca7735b)|
|23 | [Irregular Interval EMA](https://github.com/letianzj/quanttrader/blob/master/examples/strategy/moving_average_cross_strategy.py) |[link](https://letianzj.github.io/exponential-moving-average.html)|
|24 | [Free Historical Market Data Download](./backtest/hist_downloader.py) |[link](https://medium.com/@letian.zj/free-historical-market-data-download-in-python-74e8edd462cf?source=friends_link&sk=5af814910524a593353ed3146290d50e)|
|25 | [Market Profile and Volume Profile](./market/market_profile.ipynb) |[link](https://medium.com/@letian.zj/market-profile-and-volume-profile-in-python-139cb636ece?source=friends_link&sk=fd883f5fefab725f14d6ddbb3d271fa7)|
|26 | [From Reinforcement Gamer to Reinforcement Trader](https://letian-wang.medium.com/from-reinforcement-gamer-to-reinforcement-trader-8b0a7ef8b53f?source=friends_link&sk=c540c7a48421c7d4de9c934a7d1a7842) | [link](./ml/reinforcement_trader.ipynb) |
|27 | [Reinforcement Portfolio Manager](./ml/reinforcement_pm.ipynb) | wip |```python
```