Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/lfl-lab/qiskit-fall-fest-2024-tutorials
The repository with `SQuADDS` tutorials for Qiskit Fall Fest 2024
https://github.com/lfl-lab/qiskit-fall-fest-2024-tutorials
Last synced: about 15 hours ago
JSON representation
The repository with `SQuADDS` tutorials for Qiskit Fall Fest 2024
- Host: GitHub
- URL: https://github.com/lfl-lab/qiskit-fall-fest-2024-tutorials
- Owner: LFL-Lab
- License: mit
- Created: 2024-10-13T17:20:14.000Z (3 months ago)
- Default Branch: main
- Last Pushed: 2024-10-16T15:48:58.000Z (3 months ago)
- Last Synced: 2024-10-18T15:05:39.853Z (3 months ago)
- Language: Jupyter Notebook
- Size: 9.14 MB
- Stars: 2
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Qiskit Fall Fest 2024 Tutorials
The repository with `SQuADDS` tutorials for Qiskit Fall Fest 2024
# Tutorials
The repository will be updated with the relevant materials on the day of the tutorials
## Tutorial 1: Introduction to SQuADDS (10/14/24 11 AM EST)
- Jupyter Notebook: [Tutorial_1_Introduction_to_SQuADDS.ipynb](Tutorial-1_Introduction_to_SQuADDS.ipynb)
- Presentation: [A Quick Intro to SQuADDS](presentations/tutorial1.pptx)
## Tutorial 2: Designing a "fab-ready" chip with SQuADDS (10/15/24 11 AM EST)
- Jupyter Notebook: [Tutorial-2_Designing_a_Chip_with_SQuADDS.ipynb](Tutorial-2_Designing_a_Chip_with_SQuADDS.ipynb)
## Tutorial 3: Machine Learning Interpolations using SQuADDS (10/16/24 11 AM EST)
- Jupyter Notebook: [Tutorial-3_ML_interpolation_in_SQuADDS.ipynb](Tutorial-3_ML_interpolation_in_SQuADDS.ipynb)
- Presentation: [Motivation for ML Interpolations](presentations/tutorial3.pptx)
# Communication
## GitHub Discussion Space
We encourage you to join our [discussion space](https://github.com/LFL-Lab/SQuADDS/discussions/categories/qiskit-fall-fest-2024) on GitHub. It's the designated place to ask questions, share ideas, and engage with the [qiskit-fall-fest-2024](https://superconductingquantumhardware.framer.website/) community.
## Discord Server
For more real-time conversations and collaboration, join the **SuperConducting Quantum Community** on Discord, created by Waqar.
---
## About SQuADDS
The SQuADDS (Superconducting Qubit And Device Design and Simulation) Database Project is an open-source resource aimed at advancing research in superconducting quantum device designs. It provides a robust workflow for generating and simulating superconducting quantum device designs, facilitating the accurate prediction of Hamiltonian parameters across a wide range of design geometries.
**Paper Link:** [SQuADDS: A Database for Superconducting Quantum Device Design and Simulation](https://quantum-journal.org/papers/q-2024-09-09-1465/)
**Docsite Link:** [https://lfl-lab.github.io/SQuADDS/](https://lfl-lab.github.io/SQuADDS/)
**Hugging Face Link:** [https://huggingface.co/datasets/SQuADDS/SQuADDS_DB](https://huggingface.co/datasets/SQuADDS/SQuADDS_DB)
**Citation**
If you use SQuADDS in your research, please cite the following paper:
```bibtex
@article{Shanto2024squaddsvalidated,
doi = {10.22331/q-2024-09-09-1465},
url = {https://doi.org/10.22331/q-2024-09-09-1465},
title = {{SQ}u{ADDS}: {A} validated design database and simulation workflow for superconducting qubit design},
author = {Shanto, Sadman and Kuo, Andre and Miyamoto, Clark and Zhang, Haimeng and Maurya, Vivek and Vlachos, Evangelos and Hecht, Malida and Shum, Chung Wa and Levenson-Falk, Eli},
journal = {{Quantum}},
issn = {2521-327X},
publisher = {{Verein zur F{\"{o}}rderung des Open Access Publizierens in den Quantenwissenschaften}},
volume = {8},
pages = {1465},
month = sep,
year = {2024}
}
```### Contribution
If you want to contribute to the **SQuADDS** project, please review the following resources:
- [How to Contribute to SQuADDS](https://lfl-lab.github.io/SQuADDS/source/resources/contribute.html)
- [Contributing Measured Data to SQuADDS](https://lfl-lab.github.io/SQuADDS/source/tutorials/Tutorial_4_Contributing_Measured_Data_to_SQuADDS.html)
- [Contributing Experimentally Validated Simulation Data](https://lfl-lab.github.io/SQuADDS/source/tutorials/Tutorial-3_Contributing_Validated_Simulation_Data_to_SQuADDS.html)---
## Contact:
For any questions or further information, contact [Sadman Ahmed Shanto](mailto:[email protected]).