Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lfl-lab/squadds

A validated design database and simulation workflow software for superconducting quantum hardware
https://github.com/lfl-lab/squadds

circuit-design design qiskit qiskit-metal quantum-computing quantum-hardware qubits resonators superconducting-qubits superconducting-resonators transmon transmon-qubit

Last synced: about 12 hours ago
JSON representation

A validated design database and simulation workflow software for superconducting quantum hardware

Awesome Lists containing this project

README

        

SQuADDS Logo

# Superconducting Qubit And Device Design and Simulation Database ![Version](https://img.shields.io/github/v/release/LFL-Lab/SQuADDS) ![Pepy Total Downloads](https://img.shields.io/pepy/dt/squadds) ![Build Status](https://img.shields.io/github/actions/workflow/status/LFL-Lab/SQuADDS/ci.yml?branch=master) ![License](https://img.shields.io/github/license/LFL-Lab/SQuADDS) [![arXiv](https://img.shields.io/badge/arXiv-2312.13483-.svg)](https://arxiv.org/abs/2312.13483) ![Alpha Version](https://img.shields.io/badge/Status-Alpha%20Version-yellow)

> :warning: **This project is an alpha release and currently under active development. Some features and documentation may be incomplete. Please update to the latest release.**

The SQuADDS (Superconducting Qubit And Device Design and Simulation) Database Project is an open-source resource aimed at advancing research in superconducting quantum device designs. It provides a robust workflow for generating and simulating superconducting quantum device designs, facilitating the accurate prediction of Hamiltonian parameters across a wide range of design geometries.

**Paper Link:** [SQuADDS: A Database for Superconducting Quantum Device Design and Simulation](https://quantum-journal.org/papers/q-2024-09-09-1465/)

**Docsite Link:** [https://lfl-lab.github.io/SQuADDS/](https://lfl-lab.github.io/SQuADDS/)

**Hugging Face Link:** [https://huggingface.co/datasets/SQuADDS/SQuADDS_DB](https://huggingface.co/datasets/SQuADDS/SQuADDS_DB)

## Table of Contents

- [Citation](#citation)
- [Installation](#installation)
- [Install using pip](#install-using-pip)
- [Install from GitHub](#install-from-source)
- [Run using Docker](#run-using-docker)
- [Tutorials](#tutorials)
- [Contributing](#contributing)
- [License](#license)
- [FAQs](#faqs)
- [Contact](#contact)
- [Contributors](#contributors)
- [Developers](#developers)

---

## Citation

If you use SQuADDS in your research, please cite the following paper:

```bibtex
@article{Shanto2024squaddsvalidated,
doi = {10.22331/q-2024-09-09-1465},
url = {https://doi.org/10.22331/q-2024-09-09-1465},
title = {{SQ}u{ADDS}: {A} validated design database and simulation workflow for superconducting qubit design},
author = {Shanto, Sadman and Kuo, Andre and Miyamoto, Clark and Zhang, Haimeng and Maurya, Vivek and Vlachos, Evangelos and Hecht, Malida and Shum, Chung Wa and Levenson-Falk, Eli},
journal = {{Quantum}},
issn = {2521-327X},
publisher = {{Verein zur F{\"{o}}rderung des Open Access Publizierens in den Quantenwissenschaften}},
volume = {8},
pages = {1465},
month = sep,
year = {2024}
}
```

---

## Installation:

### Install using pip:

```bash
pip install SQuADDS
```

### Install from source:

1. Clone Repository:
Navigate to your chosen directory and clone the repository.

```bash
cd
git clone https://github.com/LFL-Lab/SQuADDS.git
```

2. Install Dependencies:
Activate a clean conda environment (with qiskit-metal) and install dependencies.

```bash
conda activate
cd SQuADDS
pip install -r requirements.txt
pip install -e .
```

#### Install on a fresh Mac/Linux system:

Read more on [here](docs/installation/unix_install.md)

### Run using Docker:

Click to expand/hide Docker instructions

We provide a pre-built Docker image that contains all dependencies, including `Qiskit-Metal` and the latest `SQuADDS` release.

#### Pull the Latest Docker Image

You can pull the latest image of **SQuADDS** from GitHub Packages:

```bash
docker pull ghcr.io/lfl-lab/squadds_env:latest
```

If you'd like to pull a specific version (support begins from `v0.3.4` onwards), use the following command:

```bash
docker pull ghcr.io/lfl-lab/squadds_env:v0.3.4
```

You can find all available versions and tags for the **squadds_env** Docker image on [LFL-Lab Packages](https://github.com/LFL-Lab?tab=packages&repo_name=SQuADDS).

#### Run the Docker Container

After pulling the image, you can run the container using:

```bash
docker run -it ghcr.io/lfl-lab/squadds_env:latest /bin/bash
```

This will give you access to a bash shell inside the container.

#### Activate the Conda Environment

Inside the container, activate the `squadds-env` environment:

```bash
conda activate squadds-env
```

#### Run SQuADDS

Once the environment is active, you can run **SQuADDS** by executing your Python scripts or starting an interactive Python session.

---

## Tutorials

The following tutorials are available to help you get started with `SQuADDS`:

- [Tutorial 1: Getting Started with SQuADDS](https://lfl-lab.github.io/SQuADDS/source/tutorials/Tutorial-1_Getting_Started_with_SQuADDS.html)
- [Tutorial 2: Simulating Interpolated Designs](https://lfl-lab.github.io/SQuADDS/source/tutorials/Tutorial-2_Simulate_interpolated_designs.html)
- [Tutorial 3: Contributing Experimentally-Validated Simulation Data to the SQuADDS Database](https://lfl-lab.github.io/SQuADDS/source/tutorials/Tutorial-3_Contributing_Validated_Simulation_Data_to_SQuADDS.html)
- [Tutorial 4: Contributing Measured Devices' Data to the SQuADDS Database](https://lfl-lab.github.io/SQuADDS/source/tutorials/Tutorial_4_Contributing_Measured_Data_to_SQuADDS.html)
- [Tutorial 5: Designing a "fab-ready" chip with SQuADDS](https://lfl-lab.github.io/SQuADDS/source/tutorials/Tutorial-5_Designing_a_fab_ready_chip_with_SQuADDS.html)
- [(COMING SOON) More tutorials]()

---

## Contributing

We welcome contributions from the community! Here is our [work wish list](wish_list.md).

Please see our [Contributing Guidelines](CONTRIBUTING.md) for more information on how to get started and absolutely feel free to reach out to us if you have any questions.

---

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

---

## FAQs

Check out our [FAQs](https://lfl-lab.github.io/SQuADDS/source/getting_started.html#faq-s) for common questions and answers.

---

## Contact

For inquiries or support, please contact [Sadman Ahmed Shanto](mailto:[email protected]).

---

## Contributors

| Name | Institution | Contribution |
|:-------------------|:-----------------------------------|:---------------------------------|
| Clark Miyamoto | New York University | Code contributor |
| Madison Howard | California Institute of Technology | Bug Hunter |
| Kaveh Pezeshki | Stanford University | Documentation contributor |
| Anne Whelan | US Navy | Documentation contributor |
| Jenny Huang | Columbia University | Documentation contributor |
| Connie Miao | Stanford University | Data Contributor |
| Malida Hecht | University of Southern California | Data contributor |
| Daria Kowsari, PhD | University of Southern California | Data contributor |
| Vivek Maurya | University of Southern California | Data contributor |
| Haimeng Zhang, PhD | IBM | Data contributor |
| Ethan Zheng | University of Southern California | Data contributor and Bug Hunter |
| Sara Sussman, PhD | Fermilab | Bug Hunter |

## Developers
- [shanto268](https://github.com/shanto268) - 311 contributions
- [elizabethkunz](https://github.com/elizabethkunz) - 17 contributions
- [LFL-Lab](https://github.com/LFL-Lab) - 3 contributions
- [NxtGenLegend](https://github.com/NxtGenLegend) - 1 contributions
- [ethanzhen7](https://github.com/ethanzhen7) - 1 contributions
---