https://github.com/lhaof/nnMamba
https://github.com/lhaof/nnMamba
Last synced: about 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/lhaof/nnMamba
- Owner: lhaof
- Created: 2024-02-05T07:37:05.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-07-29T02:33:59.000Z (10 months ago)
- Last Synced: 2024-08-01T03:34:02.612Z (10 months ago)
- Language: Python
- Size: 5.58 MB
- Stars: 43
- Watchers: 4
- Forks: 3
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# nnMamba ISBI 2025 Oral
nnMamba: 3D Biomedical Image Segmentation, Classification and Landmark Detection with State Space Model
In biomedical image analysis, capturing long-range dependencies is crucial. Traditional Convolutional Neural Networks (CNNs) are limited by their local receptive fields, while Transformers, although proficient at global context integration, are computationally demanding for high-dimensional medical images.
We introduce **nnMamba**, a novel architecture that leverages the strengths of CNNs along with the long-range modeling capabilities of State Space Models (SSMs). Our method features the **Mamba-In-Convolution with Channel-Spatial Siamese Learning (MICCSS)** block that effectively models long-range voxel relationships. Additionally, we employ channel scaling and channel-sequential learning techniques to enhance performance across dense prediction and classification tasks.
Extensive experiments on seven datasets demonstrate that **nnMamba** outperforms current state-of-the-art methods in 3D image segmentation, classification, and landmark detection. By integrating the local representation power of CNNs with the global context processing of SSMs, **nnMamba** sets a new benchmark for modeling long-range dependencies in medical image analysis.

The nnMamba framework is designed for 3D biomedical tasks, focusing on dense prediction and classification. Our approach addresses the challenge of long-range modeling by harnessing the lightweight and robust capabilities of State Space Models.
## Deployment
For segmentation or landmark detection task, please refer to **nnMamba.py**; For classification task, please refer to **nnMamba4cls.py**. The detailed training pipelines are available at **nnunet** folder for segmentation and **classification** folder for ADNI classification.Checkpoints are available at:
## Methods
**Architecture Overview**

- **Dense Prediction (Segmentation and Landmark Detection):** Panels (a) and (b) illustrate the network structure.
- **Classification:** Panel (b) shows the network structure.
- **Detailed Blocks:** Panels (c), (d), and (e) provide specifics of the blocks used within the networks.**Algorithm: CSS – Channel-Spatial Siamese Learning**
1. **SiamSSM**
*SSM with shared parameters.*
2. **x_flat** ← input feature with shape [B, L, C]
3. **x_mamba** ← SiamSSM(x_flat)
4. For each dimension set _d_ in { [1], [2], [1, 2] }:
- **x_flip** ← flip(x_flat, dims = d)
- **x_mamba** ← x_mamba + flip(SiamSSM(x_flip), dims = d)
5. **x_mamba** ← (1/4) × x_mamba
*Visualization on the AMOS22 CT validation dataset: By modeling long-range dependencies, nnMamba reduces over-segmentation and under-segmentation, especially over long distances.*
## Results
### BraTS 2023 Glioma Segmentation
| Methods | WT | TC | ET | Average | WT | TC | ET | Average |
|-----------------------------------------|-------|-------|-------|---------|------|------|-------|---------|
| **DIT** [Peebles et al., 2023] | 93.49 | 90.22 | 84.38 | 89.36 | 4.21 | 5.27 | 13.64 | 7.71 |
| **UNETR** [Hatamizadeh et al., 2022] | 93.33 | 89.89 | 85.19 | 89.47 | 4.76 | 7.27 | 12.78 | 8.27 |
| **nnUNet** [Isensee et al., 2021] | 93.31 | 90.24 | 85.18 | 89.58 | 4.49 | 4.95 | 11.91 | 7.12 |
| **nnMamba** | 93.46 | 90.74 | 85.72 | 89.97 | 4.18 | 5.12 | 10.31 | 6.53 |*Note: The first four columns correspond to Dice scores, while the last four columns report HD95 values.*
### AMOS2022 Dataset
| Methods | Parameters (M) | FLOPs (G) | CT-Test mDice | CT-Test mNSD | MRI-Test mDice | MRI-Test mNSD |
|-------------------------------------------|----------------|-----------|---------------|--------------|----------------|---------------|
| **nnUNet** [Isensee et al., 2021] | 31.18 | 680.31 | 89.04 | 78.32 | 67.63 | 59.02 |
| **nnFormer** [Zhou et al., 2023] | 150.14 | 425.78 | 85.61 | 72.48 | 62.92 | 54.06 |
| **UNETR** [Hatamizadeh et al., 2022] | 93.02 | 177.51 | 79.43 | 60.84 | 57.91 | 47.25 |
| **SwinUNetr** [Hatamizadeh et al., 2021] | 62.83 | 668.15 | 86.32 | 73.83 | 57.50 | 47.04 |
| **U-mamba** [Ma et al., 2024] | 40.00 | 792.87 | 87.53 | 75.83 | 74.21 | 64.79 |
| **nnMamba** | 15.55 | 141.14 | 89.63 | 79.73 | 73.98 | 65.13 |### ADNI Classification
#### NC vs. AD Classification
| Methods | ACC | F1 | AUC |
|----------------------------------------|------------------|------------------|------------------|
| **ResNet** [He et al., 2016] | 88.40 ± 3.41 | 88.00 ± 2.81 | 94.93 ± 0.72 |
| **DenseNet** [Huang et al., 2017] | 87.95 ± 0.70 | 86.93 ± 0.87 | 94.86 ± 0.40 |
| **ViT** [Dosovitskiy et al., 2021] | 88.85 ± 1.17 | 87.66 ± 1.72 | 94.12 ± 1.29 |
| **CRATE** [Yu et al., 2023] | 84.69 ± 2.53 | 82.66 ± 3.47 | 91.42 ± 1.43 |
| **nnMamba** | 89.53 ± 0.68 | 88.16 ± 1.16 | 95.76 ± 0.18 |#### sMCI vs. pMCI Classification
| Methods | ACC | F1 | AUC |
|----------------------------------------|------------------|------------------|------------------|
| **ResNet** [He et al., 2016] | 67.96 ± 1.50 | 52.14 ± 1.51 | 74.94 ± 2.18 |
| **DenseNet** [Huang et al., 2017] | 73.12 ± 3.10 | 53.30 ± 2.99 | 76.31 ± 3.09 |
| **ViT** [Dosovitskiy et al., 2021] | 67.16 ± 3.16 | 51.68 ± 5.72 | 75.08 ± 6.88 |
| **CRATE** [Yu et al., 2023] | 70.63 ± 2.60 | 53.41 ± 2.53 | 76.06 ± 2.98 |
| **nnMamba** | 68.06 ± 4.65 | 53.43 ± 1.64 | 77.55 ± 1.29 |### Landmark Detection
#### LFC Test Set
| Methods | TCD1 | TCD2 | HDV1 | HDV2 | ADV1 | ADV2 | Average |
|-----------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|
| **ResUNet** [Xu et al., 2019] | 1.38 ± 0.07 | 1.42 ± 0.10 | 1.46 ± 0.09 | 1.41 ± 0.04 | 1.52 ± 0.00 | 1.18 ± 0.05 | 1.39 ± 0.01 |
| **Hourglass** [Newell et al., 2016] | 1.40 ± 0.02 | 1.39 ± 0.03 | 1.52 ± 0.03 | 1.45 ± 0.04 | 1.47 ± 0.05 | 1.24 ± 0.02 | 1.41 ± 0.02 |
| **VitPose** [Xu et al., 2022] | 1.65 ± 0.01 | 1.73 ± 0.05 | 1.69 ± 0.03 | 1.71 ± 0.04 | 1.74 ± 0.04 | 1.38 ± 0.03 | 1.65 ± 0.02 |
| **SwinUnetr** [Hatamizadeh et al., 2021] | 1.81 ± 0.01 | 1.87 ± 0.03 | 1.82 ± 0.03 | 1.87 ± 0.02 | 1.94 ± 0.02 | 1.42 ± 0.03 | 1.79 ± 0.02 |
| **nnMamba** | 1.27 ± 0.01 | 1.40 ± 0.02 | 1.48 ± 0.00 | 1.35 ± 0.02 | 1.43 ± 0.01 | 1.14 ± 0.04 | 1.34 ± 0.01 |#### FeTA Test Set
| Methods | TCD1 | TCD2 | HDV1 | HDV2 | ADV1 | ADV2 | Average |
|-----------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|
| **ResUNet** [Xu et al., 2019] | 1.90 ± 0.30 | 1.46 ± 0.23 | 2.19 ± 0.23 | 1.96 ± 0.36 | 2.55 ± 0.48 | 1.73 ± 0.02 | 1.97 ± 0.27 |
| **Hourglass** [Newell et al., 2016] | 2.43 ± 0.48 | 1.47 ± 0.01 | 2.27 ± 0.04 | 2.10 ± 0.33 | 2.85 ± 0.28 | 1.75 ± 0.05 | 2.15 ± 0.12 |
| **VitPose** [Xu et al., 2022] | 8.46 ± 3.36 | 9.88 ± 0.97 | 16.47 ± 4.11 | 5.62 ± 0.98 | 14.46 ± 3.86 | 7.07 ± 3.24 | 10.32 ± 1.64 |
| **SwinUnetr** [Hatamizadeh et al., 2021] | 8.41 ± 0.87 | 6.50 ± 1.29 | 3.83 ± 0.45 | 4.16 ± 0.49 | 4.62 ± 0.39 | 2.44 ± 0.17 | 4.99 ± 0.25 |
| **nnMamba** | 1.70 ± 0.10 | 1.41 ± 0.02 | 1.96 ± 0.02 | 1.65 ± 0.03 | 2.20 ± 0.04 | 1.61 ± 0.03 | 1.76 ± 0.01 |## Citation
If you find this project useful, please consider citing us:
```
@inproceedings{gong2025nnmamba,
title={nnmamba: 3D biomedical image segmentation, classification and landmark detection with state space model},
author={Gong, Haifan and Kang, Luoyao and Wang, Yitao and Wang, Yihan and Wan, Xiang and Wu, Xusheng and Li, Haofeng},
booktitle={ISBI},
year={2025}
}
```