Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/liaad/tieval
An Evaluation Framework for Temporal Information Extraction Systems
https://github.com/liaad/tieval
evaluation-framework information-extraction nlp temporal-relations
Last synced: 10 days ago
JSON representation
An Evaluation Framework for Temporal Information Extraction Systems
- Host: GitHub
- URL: https://github.com/liaad/tieval
- Owner: LIAAD
- License: other
- Created: 2022-02-22T09:47:08.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2024-10-31T12:54:48.000Z (20 days ago)
- Last Synced: 2024-10-31T13:40:15.618Z (20 days ago)
- Topics: evaluation-framework, information-extraction, nlp, temporal-relations
- Language: Python
- Homepage:
- Size: 1 MB
- Stars: 16
- Watchers: 7
- Forks: 1
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# tieval
[![PyPI](https://img.shields.io/pypi/v/tieval)](https://pypi.org/project/tieval/)
[![Documentation Status](https://readthedocs.org/projects/tieval/badge/?version=latest)](https://tieval.readthedocs.io/en/latest/?badge=latest)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/tieval)
[![PyPI - License](https://img.shields.io/pypi/l/tieval)](LICENSE)
![GitHub repo size](https://img.shields.io/github/repo-size/LIAAD/tieval)[![Paper](https://img.shields.io/badge/-paper-9cf)](https://dl.acm.org/doi/abs/10.1145/3539618.3591892)
A framework for evaluation and development of temporally aware models.
![](imgs/tieval.png)
## Installation
The package is available on [PyPI](https://pypi.org/project/tieval/):
```shell
pip install tieval
```It requires Python 3.8 or above.
## Usage
To understand its usability refer to the notebooks available [here]().
## Data
Throughout the last two decades many datasets have been developed to train this task.
tieval provides an easy interface to download the available corpus.To know more about the module run the following code on the terminal.
```shell
python -m tieval download --help
```## How to ...
In this section, we summarize how to perform the most useful operations in tieval.
### download a dataset.
```python
from pathlib import Path
from tieval import datasetsdata_path = Path("data/")
datasets.download("TimeBank", data_path)
```### load a dataset.
```python
from tieval import datasetste3 = datasets.read("tempeval_3")
```### load a model.
```python
from tieval import modelsmodel = models.TimexIdentificationBaseline()
```### make predictions.
```python
pred = model.predict(te3.test)
```### evaluate predictions.
```python
from tieval import evaluateannot = {doc.name: doc.timexs for doc in te3.test}
results = evaluate.timex_identification(annot, pred)
```## Contributing
1. Fork it (https://github.com/LIAAD/tieval)
2. Create your feature branch (`git checkout -b feature/fooBar`)
3. Commit your changes (`git commit -am 'Add some fooBar'`)
4. Push to the branch (`git push origin feature/fooBar`)
5. Create a new Pull Request## Meta
Hugo Sousa - [email protected]
This framework is part of the [Text2Story](https://text2story.inesctec.pt/) project which is financed by the ERDF –
European Regional Development Fund through the North Portugal Regional Operational Programme (NORTE 2020), under the
PORTUGAL 2020 and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia
within project PTDC/CCI-COM/31857/2017 (NORTE-01-0145-FEDER-03185)## Publications
If you use `tieval` in your work please site the following article:
```bibtex
@inproceedings{10.1145/3539618.3591892,
author = {Sousa, Hugo and Campos, Ricardo and Jorge, Al\'{\i}pio M\'{a}rio},
title = {Tieval: An Evaluation Framework for Temporal Information Extraction Systems},
year = {2023},
isbn = {9781450394086},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3539618.3591892},
doi = {10.1145/3539618.3591892},
booktitle = {Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval},
pages = {2871–2879},
numpages = {9},
keywords = {temporal information extraction, evaluation, python package},
location = {Taipei, Taiwan},
series = {SIGIR '23}
}
```