Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/libkriging/libkriging
kriging library for performance and wide language support
https://github.com/libkriging/libkriging
cxx17 kriging linux macos matlab octave python r windows
Last synced: 2 days ago
JSON representation
kriging library for performance and wide language support
- Host: GitHub
- URL: https://github.com/libkriging/libkriging
- Owner: libKriging
- License: apache-2.0
- Created: 2019-06-20T12:58:55.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2025-01-15T09:04:27.000Z (14 days ago)
- Last Synced: 2025-01-19T16:09:11.992Z (9 days ago)
- Topics: cxx17, kriging, linux, macos, matlab, octave, python, r, windows
- Language: C++
- Homepage:
- Size: 38.5 MB
- Stars: 39
- Watchers: 8
- Forks: 18
- Open Issues: 54
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
README
[![Build and tests](https://github.com/libKriging/libKriging/actions/workflows/main.yml/badge.svg)](https://github.com/libKriging/libKriging/actions/workflows/main.yml)
[![Code Analysis](https://github.com/libKriging/libKriging/actions/workflows/analysis.yml/badge.svg)](https://github.com/libKriging/libKriging/actions/workflows/analysis.yml)
[![Coverage Status](https://coveralls.io/repos/github/libKriging/libKriging/badge.svg?branch=master)](https://coveralls.io/github/libKriging/libKriging?branch=master)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](https://opensource.org/licenses/Apache-2.0)Table of contents
- [Installation from pre-built packages](#installation-from-pre-built-packages)
- [pylibkriging for Python](#pylibkriging-for-python)
- [rlibkriging for R](#rlibkriging--for-r)
- [mlibkriging for Octave and MATLAB](#mlibkriging-for-octave-and-matlab)
- [Expected demo results](#expected-demo-results)
- [Tested installation](#tested-installation)
- [Compilation](#compilation)
- [Requirements (more details)](#requirements-more-details)
- [Get the code](#get-the-code)
- [Helper scripts for CI](#helper-scripts-for-ci)
- [Compilation and tests *manually*](#compilation-and-tests-manually)
- [Preamble](#preamble)
- [Compilation for Linux and macOS](#compilation-for-linux-and-macos)
- [Compilation for Windows 64bits with Visual Studio](#compilation-for-windows-64bits-with-visual-studio)
- [Compilation for Linux/Mac/Windows using R toolchain](#compilation-for-linuxmacwindows-using-r-toolchain)
- [Deployment](#deployment)
- [For Linux and macOS](#for-linux-and-macos)
- [For Windows 64bits with Visual Studio](#for-windows-64bits-with-visual-studio)
- [Assisted compilation and installation](#assisted-compilation-and-installation)
- [Using `pip install` from GitHub](#using-pip-install-from-github)If you want to contribute read [Contribution guide](CONTRIBUTING.md).
# Installation from pre-built packages
For the most common target {Python, R, Octave, Matlab} x {Linux, macOS, Windows} x { x86-64, ARM }, you can
use [released binaries](https://github.com/libKriging/libKriging/releases), or R CRAN or Python PyPI.## [pylibkriging](https://pypi.org/project/pylibkriging/) for Python
```shell
pip3 install pylibkriging
```or for pre-release packages (according to your OS and Python version, see https://github.com/libKriging/libKriging/releases)
```shell
pip3 install https://github.com/libKriging/libKriging/releases/download/v0.9.0/pylibkriging-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
```**Usage example [here](bindings/Python/tests/pylibkriging_demo.py)**
πThe sample code below should give you a taste. Please refer to the reference file linked above for a CI certified example.
```python
import numpy as npX = [0.0, 0.25, 0.5, 0.75, 1.0]
f = lambda x: (1 - 1 / 2 * (np.sin(12 * x) / (1 + x) + 2 * np.cos(7 * x) * x ** 5 + 0.7))
y = [f(xi) for xi in X]import pylibkriging as lk
k_py = lk.Kriging(y, X, "gauss")
print(k_py.summary())
# you can also check logLikelhood using:
# def ll(t): return k_py.logLikelihoodFun(t,False,False)[0]
# t = np.arange(0,1,1/99); pyplot.figure(1); pyplot.plot(t, [ll(ti) for ti in t]); pyplot.show()x = np.arange(0, 1, 1 / 99)
p = k_py.predict(x, True, False)
p = {"mean": p[0], "stdev": p[1], "cov": p[2]} # This should be done by predictimport matplotlib.pyplot as pyplot
pyplot.figure(1)
pyplot.plot(x, [f(xi) for xi in x])
pyplot.scatter(X, [f(xi) for xi in X])pyplot.plot(x, p['mean'], color='blue')
pyplot.fill(np.concatenate((x, np.flip(x))),
np.concatenate((p['mean'] - 2 * p['stdev'], np.flip(p['mean'] + 2 * p['stdev']))), color='blue',
alpha=0.2)
pyplot.show()s = k_py.simulate(10, 123, x)
pyplot.figure(2)
pyplot.plot(x, [f(xi) for xi in x])
pyplot.scatter(X, [f(xi) for xi in X])
for i in range(10):
pyplot.plot(x, s[:, i], color='blue', alpha=0.2)
pyplot.show()
```Note for older versions (< 0.5)
NB: On Windows, it should require [extra DLL](https://github.com/libKriging/libKriging/releases/download/v0.4.2/extra_dlls_for_python_on_windows.zip) not (yet) embedded in the python package.
To load them into Python's search PATH, use:
```python
import os
os.environ['PATH'] = 'c:\\Users\\User\\Path\\to\\dlls' + os.pathsep + os.environ['PATH']
import pylibkriging as lk
```## [rlibkriging](https://github.com/libKriging/rlibkriging/) for R
From R:
```r
install.packages('rlibkriging')
```Or using the archive from [libKriging releases](https://github.com/libKriging/rlibKriging/releases)
```R
# in R
install.packages("https://github.com/libKriging/rlibkriging/releases/download/0.9-0/rlibkriging_0.9-0_R_x86_64-pc-linux-gnu.tar.gz", repos=NULL)
```**Usage example [here](bindings/R/rlibkriging/tests/testthat/test-rlibkriging-demo.R)**
πThe sample code below should give you a taste. Please refer to the reference file linked above for a CI certified example.
```R
X <- as.matrix(c(0.0, 0.25, 0.5, 0.75, 1.0))
f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
y <- f(X)library(rlibkriging)
k_R <- Kriging(y, X, "gauss")
print(k_R)
# you can also check logLikelhood using:
# ll = function(t) logLikelihoodFun(k_R,t)$logLikelihood; plot(ll)
x <- as.matrix(seq(0, 1, , 100))
p <- predict(k_R, x, TRUE, FALSE)plot(f)
points(X, y)
lines(x, p$mean, col = 'blue')
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)), border = NA, col = rgb(0, 0, 1, 0.2))s <- simulate(k_R,nsim = 10, seed = 123, x=x)
plot(f)
points(X,y)
matplot(x,s,col=rgb(0,0,1,0.2),type='l',lty=1,add=T)
```## mlibkriging for Octave and MATLAB
β οΈ Matlab/Windows binary packages are done on request (GitHub Action does not support all required Operating Systems)
Download and uncompress the Octave archive from [libKriging releases](https://github.com/libKriging/libKriging/releases)
```shell
# example
curl -LO https://github.com/libKriging/libKriging/releases/download/v0.9.0/mLibKriging_0.9.0_Linux-x86_64.tgz
```Then
```shell
octave --path /path/to/mLibKriging/installation
```or inside Octave or Matlab
```matlab
addpath("path/to/mLibKriging")
```**Usage example [here](bindings/Octave/tests/mLibKriging_demo.m)**
πThe sample code below should give you a taste. Please refer to the reference file linked above for a CI certified example.
```matlab
X = [0.0;0.25;0.5;0.75;1.0];
f = @(x) 1-1/2.*(sin(12*x)./(1+x)+2*cos(7.*x).*x.^5+0.7)
y = f(X);
k_m = Kriging(y, X, "gauss");
disp(k_m.summary());
% you can also check logLikelhood using:
% function llt = ll (tt) global k_m; llt=k_m.logLikelihoodFun(tt); endfunction; t=0:(1/99):1; plot(t,arrayfun(@ll,t))
x = reshape(0:(1/99):1,100,1);
[p_mean, p_stdev] = k_m.predict(x, true, false);h = figure(1)
hold on;
plot(x,f(x));
scatter(X,f(X));
plot(x,p_mean,'b')
poly = fill([x; flip(x)], [(p_mean-2*p_stdev); flip(p_mean+2*p_stdev)],'b');
set( poly, 'facealpha', 0.2);
hold off;s = k_m.simulate(int32(10),int32(123), x);
h = figure(2)
hold on;
plot(x,f(x));
scatter(X,f(X));
for i=1:10
plot(x,s(:,i),'b');
end
hold off;
```## Expected demo results
Using the previous linked examples (in Python, R, Octave or Matlab), you should obtain the following results
`predict` plot | `simulate` plot
:-------------------------------------------:|:---------------------------------------------:
![](docs/images/pylibkriging_demo_plot1.png) | ![](docs/images/pylibkriging_demo_plot2.png)## Tested installation
with libKriging 0.9
| | Linux Ubuntu:22 | macOS 14 (x86-64 & ARM) | Windows 10 |
|:-------|:--------------------------------------------|:--------------------------------------------|:--------------------------------------------|
| Python | β 3.7-3.12 | β 3.7-3.12 | β 3.7-3.12 |
| R | β 4.0-4.4 | β 4.0-4.4 | β 4.0-4.4 |
| Octave | β 7.2 | β 7.2 | β 8.3 |
| Matlab | οΈβ R2022a | β R2022* | β R2022* |* \* : no pre-built package or CI
* ? : requires manual verification (not updated since previous release)
# Compilation
## Requirements ([more details](docs/dev/envs/Requirements.md))
* CMake β₯ 3.13
* C++ Compiler with C++17 support
* Linear algebra packages providing Blas and Lapack functions.
You can use standard Blas and Lapack, OpenBlas or MKL.
* Python β₯ 3.7 (optional)
* Octave β₯ 6.0 (optional)
* Matlab β₯ R2021 (optional)
* R β₯ 4.0 (optional)
## Get the code
Just clone it with its submodules:
```
git clone --recurse-submodules https://github.com/libKriging/libKriging.git
```## Helper scripts for CI
Note: calling these scripts "by hand" should produce the same results as following "Compilation and unit tests"
instructions (and it should be also easier).
They use the preset of options also used in CI workflow.To configure it, you can define following environment variables ([more details](docs/dev/AllCMakeOptions.md)):
| Variable name | Default value | Useful values | Comment |
|:-----------------------|:--------------|:-----------------------------------|:------------------------------------------------|
|`MODE` | `Debug` | `Debug`, `Release` | |
|`ENABLE_OCTAVE_BINDING` | `AUTO` | `ON`, `OFF`, `AUTO` (if available) | Exclusive with Matlab binding build |
|`ENABLE_MATLAB_BINDING` | `AUTO` | `ON`, `OFF`, `AUTO` (if available) | Exclusive with Octave binding build |
|`ENABLE_PYTHON_BINDING` | `AUTO` | `ON`, `OFF`, `AUTO` (if available) | |Then choose your `BUILD_NAME` using the following rule (stops a rule matches)
| `BUILD_NAME` | when you want to build | available bindings |
|:-----------------|:-------------------------------|:-------------------------------|
| `r-windows` | a R binding for windows | C++, rlibkriging |
| `r-linux-macos` | a R binding for Linux or macOS | C++, rlibkriging |
| `octave-windows` | an Octave for windows | C++, mlibkriging |
| `windows` | for windows | C++, mlibkriging, pylibkriging |
| `linux-macos` | for Linux or macOS | C++, mlibkriging, pylibkriging |Then:
* Go into `libKriging` root directory
```shell
cd libKriging
```
* Prepare your environment (Once, for your first compilation)
```shell
.travis-ci/${BUILD_NAME}/install.sh
```
* Build
```shell
.travis-ci/${BUILD_NAME}/build.sh
```
NB: It will create a `build` directory.* Test
```shell
.travis-ci/${BUILD_NAME}/test.sh
```## Compilation and tests *manually*
### Preamble
We assume that:
* [libKriging](https://github.com/libKriging/libKriging.git) code is available locally in directory *`${LIBKRIGING}`*
(could be a relative path like `..`)
* you have built a fresh new directory *`${BUILD}`*
(should be an absolute path)
* following commands are executed in *`${BUILD}`* directoryPS: *`${NAME}`* syntax represents a word or an absolute path of your choice
Select your compilation *`${MODE}`* between:
* `Release` : produce an optimized code
* `Debug` (default) : produce a debug code
* `Coverage` : for code coverage analysis (not yet tested with Windows)Following commands are made for Unix shell. To use them with Windows use [git-bash](https://gitforwindows.org)
or [Mingw](http://www.mingw.org) environments.### Compilation for Linux and macOS
π expand the details
* Configure
```shell
cmake -DCMAKE_BUILD_TYPE=${MODE} ${LIBKRIGING}
```
* Build
```shell
cmake --build .
```
* Run tests
```shell
ctest
```
* Build documentation (requires doxygen)
```shell
cmake --build . --target doc
```
* if you have selected `MODE=Coverage` mode, you can generate code coverage analysis over all tests using
```shell
cmake --build . --target coverage --config Coverage
```
or
```shell
cmake --build . --target coverage-report --config Coverage
```
to produce a html report located in `${BUILD}/coverage/index.html`### Compilation for Windows 64bits with Visual Studio
π expand the details
* Configure
```shell
cmake -DCMAKE_GENERATOR_PLATFORM=x64 -DEXTRA_SYSTEM_LIBRARY_PATH=${EXTRA_SYSTEM_LIBRARY_PATH} ${LIBKRIGING}
```
where `EXTRA_SYSTEM_LIBRARY_PATH` is an extra path where libraries (e.g. OpenBLAS) can be found.
* Build
```shell
cmake --build . --target ALL_BUILD --config ${MODE}
```
* Run tests
```shell
export PATH=${BUILD}/src/lib/${MODE}:$PATH
ctest -C ${MODE}
```### Compilation for Linux/Mac/Windows using R toolchain
π expand the details
With this method, you need [R](https://cran.r-project.org) (
and [R-tools](https://cran.r-project.org/bin/windows/Rtools/) if you are on Windows).We assume you have previous requirements and also `make` command available in your `PATH`.
* Configure
```shell
CC=$(R CMD config CC) CXX=$(R CMD config CXX) cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=${MODE} ${LIBKRIGING}
```
* Build
```shell
cmake --build .
```
* Run tests
```shell
ctest
```## Deployment
To deploy libKriging as an installed library, you have to add `-DCMAKE_INSTALL_PREFIX:PATH=${INSTALL_PREFIX}` option to
first `cmake` configuration command.If `CMAKE_INSTALL_PREFIX` variable is not set with CMake, default installation directory is `${BUILD}/installed`.
### For Linux and macOS
π expand the details
```shell
cmake -DCMAKE_BUILD_TYPE=${MODE} -DCMAKE_INSTALL_PREFIX:PATH=${INSTALL_PREFIX} ${LIBKRIGING}
```and then
```shell
cmake --build . --target install
```aka with classical makefiles
```shell
make install
```### For Windows 64bits with Visual Studio
π expand the details
```shell
cmake -DCMAKE_GENERATOR_PLATFORM=x64 -DEXTRA_SYSTEM_LIBRARY_PATH=${EXTRA_SYSTEM_LIBRARY_PATH} -DCMAKE_INSTALL_PREFIX:PATH=${INSTALL_PREFIX} ${LIBKRIGING}
```and then
```shell
cmake --build . --target install --config ${MODE}
```## Assisted compilation and installation
### Using `pip install` from GitHub
You don't need to download libKriging. `pip install` will do everything. To do that, you need
the [Compilation requirements](#requirements-more-details).```shell
python3 -m pip install "git+https://github.com/libKriging/libKriging.git"
```will download, compile and install pylibkriging from *master* branch.
Example of build process output (~2mn)
```
Collecting git+https://github.com/libKriging/libKriging.git
Cloning https://github.com/libKriging/libKriging.git to /private/var/folders/g0/56fnffpn6tjd5kplh140ysrh0000gn/T/pip-req-build-2xhzyw9g
Running command git clone --filter=blob:none -q https://github.com/libKriging/libKriging.git /private/var/folders/g0/56fnffpn6tjd5kplh140ysrh0000gn/T/pip-req-build-2xhzyw9g
Resolved https://github.com/libKriging/libKriging.git to commit 1a86dd69cf1f60b6dcd2b5e5b876cafc97d616e9
Running command git submodule update --init --recursive -q
Preparing metadata (setup.py) ... done
Building wheels for collected packages: pylibkriging
Building wheel for pylibkriging (setup.py) ... done
Created wheel for pylibkriging: filename=pylibkriging-0.4.8-cp39-cp39-macosx_12_0_x86_64.whl size=712572 sha256=7963a78f16628c5a7d877b368fdd73452e5acf01784cd6931d48dcdc08e62a5b
Stored in directory: /private/var/folders/g0/56fnffpn6tjd5kplh140ysrh0000gn/T/pip-ephem-wheel-cache-o7kxij3t/wheels/52/71/b0/e534f2249e9180c596a5b785cf0bfa5471fcfd38d2987318f8
Successfully built pylibkriging
Installing collected packages: pylibkriging
Successfully installed pylibkriging-0.4.8
```To get a particular version (branch or tag β₯v0.4.9), you can use:
```shell
python3 -m pip install "git+https://github.com/libKriging/libKriging.git@tag"
```