Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/librahu/HeGAN
Source code for KDD 2019 paper "Adversarial Learning on Heterogeneous Information Networks"
https://github.com/librahu/HeGAN
Last synced: 5 days ago
JSON representation
Source code for KDD 2019 paper "Adversarial Learning on Heterogeneous Information Networks"
- Host: GitHub
- URL: https://github.com/librahu/HeGAN
- Owner: librahu
- Created: 2019-02-12T08:25:30.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2019-05-05T09:34:38.000Z (over 5 years ago)
- Last Synced: 2024-08-01T22:41:47.717Z (3 months ago)
- Language: Python
- Homepage:
- Size: 14.2 MB
- Stars: 71
- Watchers: 2
- Forks: 24
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-network-embedding - [Python
README
# HeGAN
Source code for paper "Adversarial Learning on Heterogeneous Information Network (KDD2019)"## Evironment Setting
* Python == 2.7.3
* Tensorflow == 1.12.0
* Numpy == 1.15.1
## Parameter Setting (see config.py)
batch_size : The size of batch.lambda_gen, lambda_dis : The regularization for generator and discriminator, respectively.
lr_gen, lr_dis : The learning rate for generator and discriminator, respectively.
n_epoch : The maximum training epoch.
sig : The variance of gaussian distribution in generator.
g_epoch, d_epoch: The number of generator and discriminator training per epoch.
n_sample : The size of sample
n_emb : The embedding size
## Files in the folder
* data/: The training data
* results/: The learned embeddings of generator ane discriminator.
* code/: The source codes
* pre_train/: The pre-trained node embeddings (Note: The dimension of pre-trained node embeddings should equal n_emb)
## Data
We provide three datasets: [DBLP](https://github.com/librahu/Heterogeneous-Information-Network-Datasets-for-Recommendation-and-Network-Embedding/tree/master/DBLP), [Yelp](https://github.com/librahu/Heterogeneous-Information-Network-Datasets-for-Recommendation-and-Network-Embedding/tree/master/Yelp_2) and [Aminer](https://github.com/librahu/Heterogeneous-Information-Network-Datasets-for-Recommendation-and-Network-Embedding/tree/master/Aminer), The detailed description of the three datasets can refer to https://github.com/librahu/Heterogeneous-Information-Network-Datasets-for-Recommendation-and-Network-Embedding### The format of input training data
* Each line: source_node target_node relation### The format of input pre-trained data
* The first line: node_num embedding_dim* Each line : node_id embdeeing_1 embedding_2, ...
### The format of output embedding
* The first line: node_num embedding_dim* Each line : node_id embdeeing_1 embedding_2, ...
## Basic Usage
cd code
python he_gan.py
# Reference
@inproceedings{
> author = {Binbin Hu, Yuan Fang and Chuan Shi.},
> title = {Adversarial Learning on Heterogeneous Information Network},
> booktitle = {Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
> year = {2019},
> publisher = {ACM},> address = {Anchorage, Alaska, USA},
> year = {2019},
> keywords = {Heterogeneous Information Network, Network Embedding, Generative Adversarial Network},
}