Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/lifeiteng/vall-e
PyTorch implementation of VALL-E(Zero-Shot Text-To-Speech), Reproduced Demo https://lifeiteng.github.io/valle/index.html
https://github.com/lifeiteng/vall-e
chatgpt in-context-learning large-language-models text-to-speech tts vall-e valle
Last synced: about 16 hours ago
JSON representation
PyTorch implementation of VALL-E(Zero-Shot Text-To-Speech), Reproduced Demo https://lifeiteng.github.io/valle/index.html
- Host: GitHub
- URL: https://github.com/lifeiteng/vall-e
- Owner: lifeiteng
- License: apache-2.0
- Created: 2023-01-27T06:56:47.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2023-11-14T12:35:46.000Z (about 1 year ago)
- Last Synced: 2025-01-18T07:04:52.566Z (8 days ago)
- Topics: chatgpt, in-context-learning, large-language-models, text-to-speech, tts, vall-e, valle
- Language: Python
- Homepage: https://lifeiteng.github.io/valle/index.html
- Size: 92.9 MB
- Stars: 2,080
- Watchers: 49
- Forks: 321
- Open Issues: 33
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
- awesome-transformers - Model (unofficial)
- awesome-ChatGPT-repositories - vall-e - PyTorch implementation of VALL-E(Zero-Shot Text-To-Speech), Reproduced Demo https://lifeiteng.github.io/valle/index.html (Reimplementations)
- awesome-chatgpt - lifeiteng/vall-e - PyTorch implementation of VALL-E(Zero-Shot Text-To-Speech), Reproduced Demo (SDK, Libraries, Frameworks / Python)
README
Language : πΊπΈ | [π¨π³](./README.zh-CN.md)
An unofficial PyTorch implementation of VALL-E([Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers](https://arxiv.org/abs/2301.02111)).
We can train the VALL-E model on one GPU.
![model](./docs/images/Overview.jpg)
## Demo
* [official demo](https://valle-demo.github.io/)
* [reproduced demo](https://lifeiteng.github.io/valle/index.html)## Broader impacts
> Since VALL-E could synthesize speech that maintains speaker identity, it may carry potential risks in misuse of the model, such as spoofing voice identification or impersonating a specific speaker.
To avoid abuse, Well-trained models and services will not be provided.
## Install Deps
To get up and running quickly just follow the steps below:
```
# PyTorch
pip install torch==1.13.1 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116
pip install torchmetrics==0.11.1
# fbank
pip install librosa==0.8.1# phonemizer pypinyin
apt-get install espeak-ng
## OSX: brew install espeak
pip install phonemizer==3.2.1 pypinyin==0.48.0# lhotse update to newest version
# https://github.com/lhotse-speech/lhotse/pull/956
# https://github.com/lhotse-speech/lhotse/pull/960
pip uninstall lhotse
pip uninstall lhotse
pip install git+https://github.com/lhotse-speech/lhotse# k2
# find the right version in https://huggingface.co/csukuangfj/k2
pip install https://huggingface.co/csukuangfj/k2/resolve/main/cuda/k2-1.23.4.dev20230224+cuda11.6.torch1.13.1-cp310-cp310-linux_x86_64.whl# icefall
git clone https://github.com/k2-fsa/icefall
cd icefall
pip install -r requirements.txt
export PYTHONPATH=`pwd`/../icefall:$PYTHONPATH
echo "export PYTHONPATH=`pwd`/../icefall:\$PYTHONPATH" >> ~/.zshrc
echo "export PYTHONPATH=`pwd`/../icefall:\$PYTHONPATH" >> ~/.bashrc
cd -
source ~/.zshrc# valle
git clone https://github.com/lifeiteng/valle.git
cd valle
pip install -e .
```## Training&Inference
* #### English example [examples/libritts/README.md](egs/libritts/README.md)
* #### Chinese example [examples/aishell1/README.md](egs/aishell1/README.md)
* ### Prefix Mode 0 1 2 4 for NAR Decoder
**Paper Chapter 5.1** "The average length of the waveform in LibriLight is 60 seconds. During
training, we randomly crop the waveform to a random length between 10 seconds and 20 seconds. For the NAR acoustic prompt tokens, we select a random segment waveform of 3 seconds from the same utterance."
* **0**: no acoustic prompt tokens
* **1**: random prefix of current batched utterances **(This is recommended)**
* **2**: random segment of current batched utterances
* **4**: same as the paper (As they randomly crop the long waveform to multiple utterances, so the same utterance means pre or post utterance in the same long waveform.)
```
# If train NAR Decoders with prefix_mode 4
python3 bin/trainer.py --prefix_mode 4 --dataset libritts --input-strategy PromptedPrecomputedFeatures ...
```#### [LibriTTS demo](https://lifeiteng.github.io/valle/index.html) Trained on one GPU with 24G memory
```
cd examples/libritts# step1 prepare dataset
bash prepare.sh --stage -1 --stop-stage 3# step2 train the model on one GPU with 24GB memory
exp_dir=exp/valle## Train AR model
python3 bin/trainer.py --max-duration 80 --filter-min-duration 0.5 --filter-max-duration 14 --train-stage 1 \
--num-buckets 6 --dtype "bfloat16" --save-every-n 10000 --valid-interval 20000 \
--model-name valle --share-embedding true --norm-first true --add-prenet false \
--decoder-dim 1024 --nhead 16 --num-decoder-layers 12 --prefix-mode 1 \
--base-lr 0.05 --warmup-steps 200 --average-period 0 \
--num-epochs 20 --start-epoch 1 --start-batch 0 --accumulate-grad-steps 4 \
--exp-dir ${exp_dir}## Train NAR model
cp ${exp_dir}/best-valid-loss.pt ${exp_dir}/epoch-2.pt # --start-epoch 3=2+1
python3 bin/trainer.py --max-duration 40 --filter-min-duration 0.5 --filter-max-duration 14 --train-stage 2 \
--num-buckets 6 --dtype "float32" --save-every-n 10000 --valid-interval 20000 \
--model-name valle --share-embedding true --norm-first true --add-prenet false \
--decoder-dim 1024 --nhead 16 --num-decoder-layers 12 --prefix-mode 1 \
--base-lr 0.05 --warmup-steps 200 --average-period 0 \
--num-epochs 40 --start-epoch 3 --start-batch 0 --accumulate-grad-steps 4 \
--exp-dir ${exp_dir}# step3 inference
python3 bin/infer.py --output-dir infer/demos \
--checkpoint=${exp_dir}/best-valid-loss.pt \
--text-prompts "KNOT one point one five miles per hour." \
--audio-prompts ./prompts/8463_294825_000043_000000.wav \
--text "To get up and running quickly just follow the steps below." \# Demo Inference
https://github.com/lifeiteng/lifeiteng.github.com/blob/main/valle/run.sh#L68
```
![train](./docs/images/train.png)#### Troubleshooting
* **SummaryWriter segmentation fault (core dumped)**
* LINE `tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")`
* FIX [https://github.com/tensorflow/tensorboard/pull/6135/files](https://github.com/tensorflow/tensorboard/pull/6135/files)
```
file=`python -c 'import site; print(f"{site.getsitepackages()[0]}/tensorboard/summary/writer/event_file_writer.py")'`
sed -i 's/import tf/import tensorflow_stub as tf/g' $file
```#### Training on a custom dataset?
* prepare the dataset to `lhotse manifests`
* There are plenty of references here [lhotse/recipes](https://github.com/lhotse-speech/lhotse/tree/master/lhotse/recipes)
* `python3 bin/tokenizer.py ...`
* `python3 bin/trainer.py ...`## Contributing
* Parallelize bin/tokenizer.py on multi-GPUs
*## Citing
To cite this repository:
```bibtex
@misc{valle,
author={Feiteng Li},
title={VALL-E: A neural codec language model},
year={2023},
url={http://github.com/lifeiteng/vall-e}
}
``````bibtex
@article{VALL-E,
title = {Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers},
author = {Chengyi Wang, Sanyuan Chen, Yu Wu,
Ziqiang Zhang, Long Zhou, Shujie Liu,
Zhuo Chen, Yanqing Liu, Huaming Wang,
Jinyu Li, Lei He, Sheng Zhao, Furu Wei},
year = {2023},
eprint = {2301.02111},
archivePrefix = {arXiv},
volume = {abs/2301.02111},
url = {http://arxiv.org/abs/2301.02111},
}
```## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=lifeiteng/vall-e&type=Date)](https://star-history.com/#lifeiteng/vall-e&Date)